結果
問題 |
No.3078 Difference Sum Query
|
ユーザー |
|
提出日時 | 2025-03-28 22:40:56 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,213 bytes |
コンパイル時間 | 4,487 ms |
コンパイル使用メモリ | 314,408 KB |
実行使用メモリ | 7,324 KB |
最終ジャッジ日時 | 2025-03-28 22:41:11 |
合計ジャッジ時間 | 8,799 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 6 TLE * 1 -- * 19 |
ソースコード
# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define eb emplace_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; template<typename T>struct segment_tree { using F = function<T(T, T)>; int offset; int n; vector<T> node; F combine; T identify; segment_tree(int _n, F _combine, T _identify) : segment_tree(vector<T>(_n, _identify), _combine, _identify) {} segment_tree(const vector<T> &v, F _combine, T _identify) : n((int)v.size()), combine(_combine), identify(_identify) { offset = 1; while(offset < n)offset <<= 1; node.resize(2*offset, identify); for(int i = 0;i < n;i++)node[i + offset] = v[i]; for(int i = offset - 1;i >= 1;i--)node[i] = combine(node[2 * i + 0], node[2 * i + 1]); } T operator[](int x) {return node[x + offset]; } void set(int x, T val){ assert(0 <= x && x < n); x += offset; node[x] = val; while(x >>= 1){ node[x] = combine(node[2 * x + 0], node[2 * x + 1]); } } T fold(int l, int r){ assert(0 <= l && l <= r && r <= n); if(l == r)return identify; T L = identify, R = identify; for(l += offset, r += offset; l < r;l >>= 1, r >>= 1){ if(l&1)L = combine(L, node[l++]); if(r&1)R = combine(node[--r], R); } return combine(L, R); } T all_fold() { return node[1]; }; int max_right(const function<bool(T)> f, int l = 0){ assert(0 <= l && l <= n); assert(f(identify)); if(l == n)return n; l += offset; T sum = identify; do{ while(l%2 == 0)l >>= 1; if(not f(combine(sum, node[l]))){ while(l < offset){ l <<= 1; if(f(combine(sum, node[l]))){ sum = combine(sum, node[l]); l++; } } return l - offset; } sum = combine(sum, node[l]); l++; }while((l&-l) != l); return n; } int min_left(const function<bool(T)> f, int r = -1){ if(r == 0)return 0; if(r == -1)r = n; r += offset; T sum = identify; do{ --r; while(r > 1 && (r % 2))r >>= 1; if(not f(combine(node[r], sum))){ while(r < offset){ r = r*2 + 1; if(f(combine(node[r], sum))){ sum = combine(node[r], sum); --r; } } return r+1 - offset; } sum = combine(node[r], sum); }while((r&-r) != r); return 0; } }; class Mo { vector<pair<int, int>> lr; public: Mo() = default; Mo(const vector<pair<int, int>> &_lr) : lr(_lr) {} template<typename AL, typename AR, typename EL, typename ER, typename F> void calc(const AL &add_left, const AR &add_right, const EL &erase_left, const ER& erase_right, const F &f, int _n = -1, int _B = -1){ int n = (_n == -1 ? ranges::max(lr, {}, &pair<int, int>::second).second : _n); int q = (int)lr.size(); int B = (_B == -1 ? max(1, n/int(sqrt(q))) : _B); vector<int> index(q); iota(index.begin(), index.end(), 0); sort(index.begin(), index.end(), [&](int i, int j){ const auto &[l_i, r_i] = lr[i]; const auto &[l_j, r_j] = lr[j]; const int B_i = l_i / B, B_j = l_j / B; if(B_i != B_j){ return B_i < B_j; } if(B_i & 1){ return r_j < r_i; }else{ return r_i < r_j; } }); int l = 0, r = 0; for(int idx : index){ const auto &[L, R] = lr[idx]; while(L < l)add_left(--l); while(r < R)add_right(r++); while(l < L)erase_left(l++); while(R < r)erase_right(--r); f(idx); } } template<typename A, typename E, typename F> void calc(const A &add, const E &erase, const F &f){ calc(add, add, erase, erase, f); } }; void SOLVE(){ int n, q; cin >> n >> q; vector<ll> a(n); for(auto &e : a)cin >> e; vector<pair<int, int>> lr(q); vector<ll> x(q); vector<ll> x_comp; rep(i, q){ cin >> lr[i].first >> lr[i].second >> x[i]; lr[i].first--; x_comp.emplace_back(x[i]); } x_comp.emplace_back(0); x_comp.emplace_back(-1); sort(all(x_comp)); UNIQUE(x_comp); unordered_map<ll, int> compress; rep(i, len(x_comp))compress[x_comp[i]] = i; Mo mo(lr); segment_tree<ll> seg_leq(len(x_comp)+1, [](ll l, ll r){return l+r;}, 0); segment_tree<ll> seg_leq_cnt(len(x_comp)+1, [](ll l, ll r){return l+r;}, 0); segment_tree<ll> seg_les(len(x_comp)+1, [](ll l, ll r){return l+r;}, 0); segment_tree<ll> seg_les_cnt(len(x_comp)+1, [](ll l, ll r){return l+r;}, 0); auto add = [&](int idx) -> void { auto it = upper_bound(all(x_comp), a[idx])-x_comp.begin(); it--; seg_leq.set(it, seg_leq[it]+a[idx]); seg_les.set(0, seg_les[0]+a[idx]); seg_les.set(it, seg_les[it]-a[idx]); seg_leq_cnt.set(it, seg_leq_cnt[it]+1); seg_les_cnt.set(0, seg_les_cnt[0]+1); seg_les_cnt.set(it, seg_les_cnt[it]-1); }; auto erase = [&](int idx) -> void { auto it = upper_bound(all(x_comp), a[idx])-x_comp.begin(); it--; seg_leq.set(it, seg_leq[it]-a[idx]); seg_les.set(0, seg_les[0]-a[idx]); seg_les.set(it, seg_les[it]+a[idx]); seg_leq_cnt.set(it, seg_leq_cnt[it]-1); seg_les_cnt.set(0, seg_les_cnt[0]-1); seg_les_cnt.set(it, seg_les_cnt[it]+1); }; vector<ll> ans(q); auto f = [&](int query_id) -> void { ll x_idx = compress[x[query_id]]; ans[query_id] -= seg_leq.fold(0, x_idx) - seg_leq_cnt.fold(0, x_idx)*x[query_id]; ans[query_id] += seg_les.fold(0, x_idx) - seg_les_cnt.fold(0, x_idx)*x[query_id]; }; mo.calc(add, erase, f); rep(i, q){ cout << ans[i] << '\n'; } } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }