結果
| 問題 |
No.3078 Difference Sum Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-28 22:46:49 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,267 bytes |
| コンパイル時間 | 4,405 ms |
| コンパイル使用メモリ | 311,104 KB |
| 実行使用メモリ | 23,156 KB |
| 最終ジャッジ日時 | 2025-03-28 22:46:58 |
| 合計ジャッジ時間 | 8,398 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 6 TLE * 1 -- * 19 |
ソースコード
# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define eb emplace_back
# define exists(c, e) ((c).find(e) != (c).end())
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
namespace mmrz {
void solve();
}
int main(){
mmrz::solve();
}
#define debug(...) (static_cast<void>(0))
using namespace mmrz;
template<typename T>struct binary_indexed_tree {
int n;
vector<T> BIT;
binary_indexed_tree(int n_) : n(n_ + 1), BIT(n, 0) {}
void add(int i, T x){
assert(1 <= i && i <= n);
for(int idx = i;idx < n;idx += (idx & -idx)){
BIT[idx] += x;
}
}
T sum(int i) {
assert(1 <= i && i <= n);
T ret = 0;
for(int idx = i;idx > 0;idx -= (idx & -idx)){
ret += BIT[idx];
}
return ret;
}
};
class Mo {
vector<pair<int, int>> lr;
public:
Mo() = default;
Mo(const vector<pair<int, int>> &_lr) : lr(_lr) {}
template<typename AL, typename AR, typename EL, typename ER, typename F>
void calc(const AL &add_left, const AR &add_right, const EL &erase_left, const ER& erase_right, const F &f, int _n = -1, int _B = -1){
int n = (_n == -1 ? ranges::max(lr, {}, &pair<int, int>::second).second : _n);
int q = (int)lr.size();
int B = (_B == -1 ? max(1, n/int(sqrt(q))) : _B);
vector<int> index(q);
iota(index.begin(), index.end(), 0);
sort(index.begin(), index.end(), [&](int i, int j){
const auto &[l_i, r_i] = lr[i];
const auto &[l_j, r_j] = lr[j];
const int B_i = l_i / B, B_j = l_j / B;
if(B_i != B_j){
return B_i < B_j;
}
if(B_i & 1){
return r_j < r_i;
}else{
return r_i < r_j;
}
});
int l = 0, r = 0;
for(int idx : index){
const auto &[L, R] = lr[idx];
while(L < l)add_left(--l);
while(r < R)add_right(r++);
while(l < L)erase_left(l++);
while(R < r)erase_right(--r);
f(idx);
}
}
template<typename A, typename E, typename F>
void calc(const A &add, const E &erase, const F &f){
calc(add, add, erase, erase, f);
}
};
void SOLVE(){
int n, q;
cin >> n >> q;
vector<ll> a(n);
for(auto &e : a)cin >> e;
vector<pair<int, int>> lr(q);
vector<ll> x(q);
vector<ll> x_comp;
rep(i, q){
cin >> lr[i].first >> lr[i].second >> x[i];
lr[i].first--;
x_comp.emplace_back(x[i]);
}
x_comp.emplace_back(0);
x_comp.emplace_back(-1);
sort(all(x_comp));
UNIQUE(x_comp);
unordered_map<ll, int> compress;
rep(i, len(x_comp))compress[x_comp[i]] = i;
Mo mo(lr);
binary_indexed_tree<ll> seg_leq(len(x_comp)+1);
binary_indexed_tree<ll> seg_leq_cnt(len(x_comp)+1);
binary_indexed_tree<ll> seg_les(len(x_comp)+1);
binary_indexed_tree<ll> seg_les_cnt(len(x_comp)+1);
auto add = [&](int idx) -> void {
auto it = upper_bound(all(x_comp), a[idx])-x_comp.begin();
seg_leq.add(it, +a[idx]);
seg_les.add(1, +a[idx]);
seg_les.add(it, -a[idx]);
seg_leq_cnt.add(it, +1);
seg_les_cnt.add(1, +1);
seg_les_cnt.add(it, -1);
};
auto erase = [&](int idx) -> void {
auto it = upper_bound(all(x_comp), a[idx])-x_comp.begin();
seg_leq.add(it, -a[idx]);
seg_les.add(1, -a[idx]);
seg_les.add(it, +a[idx]);
seg_leq_cnt.add(it, -1);
seg_les_cnt.add(1, -1);
seg_les_cnt.add(it, +1);
};
vector<ll> ans(q);
auto f = [&](int query_id) -> void {
ll x_idx = compress[x[query_id]];
ans[query_id] -= seg_leq.sum(x_idx) - seg_leq_cnt.sum(x_idx)*x[query_id];
ans[query_id] += seg_les.sum(x_idx) - seg_les_cnt.sum(x_idx)*x[query_id];
};
mo.calc(add, erase, f);
rep(i, q){
cout << ans[i] << '\n';
}
}
void mmrz::solve(){
int t = 1;
//cin >> t;
while(t--)SOLVE();
}