結果
問題 | No.3080 Colonies on Line |
ユーザー |
👑 ![]() |
提出日時 | 2025-03-28 22:56:08 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 5,628 ms / 6,500 ms |
コード長 | 25,806 bytes |
コンパイル時間 | 4,039 ms |
コンパイル使用メモリ | 156,812 KB |
実行使用メモリ | 17,856 KB |
最終ジャッジ日時 | 2025-03-28 22:57:27 |
合計ジャッジ時間 | 73,252 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 35 |
ソースコード
#ifdef NACHIA#define _GLIBCXX_DEBUG#else#define NDEBUG#endif#include <iostream>#include <string>#include <vector>#include <algorithm>using i64 = long long;using u64 = unsigned long long;#define rep(i,n) for(i64 i=0; i<i64(n); i++)const i64 INF = 1001001001001001001;template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }using namespace std;#include <atcoder/convolution>#include <cassert>#include <utility>namespace nachia{// ax + by = gcd(a,b)// return ( x, - )std::pair<long long, long long> ExtGcd(long long a, long long b){long long x = 1, y = 0;while(b){long long u = a / b;std::swap(a-=b*u, b);std::swap(x-=y*u, y);}return std::make_pair(x, a);}} // namespace nachianamespace nachia{class DynamicModSupplier{using u64 = unsigned long long;using Int = unsigned int;private:u64 imod;Int mod;// atcoder libraryu64 reduce2(u64 z) const noexcept {// atcoder library#ifdef _MSC_VERu64 x; _umul128(z, im, &x);#elseusing u128 = unsigned __int128;u64 x = (u64)(((u128)(z)*imod) >> 64);#endifreturn z - x * mod;}public:DynamicModSupplier(unsigned int MOD = 998244353) : mod(MOD) {assert(2 <= MOD);assert(MOD < (1u << 31));imod = (u64)(-1) / mod + 1;}Int reduce(u64 z) const noexcept {Int v = reduce2(z);if(mod <= v) v += mod;return v;}Int add(Int a, Int b) const { a += b; if(a >= mod){ a -= mod; } return a; }Int sub(Int a, Int b) const { a -= b; if(a >= mod){ a += mod; } return a; }Int mul(Int a, Int b) const { return reduce((u64)a * b); }Int muladd(Int a, Int b, Int c) const { return reduce((u64)a * b + c); }Int inv(Int a) const {Int v = ExtGcd(a, mod).first;return (v < mod) ? v : (v + mod);}Int pow(Int a, u64 i) const {Int r = a, ans = 1;while(i){if(i & 1) ans = mul(ans, r);i /= 2;r = mul(r, r);}return ans;}Int getMod() const { return mod; }};} // namespace nachianamespace nachia{template<class FinishType>struct GarnerMod{using Int = unsigned int;using IntLong = unsigned long long;std::vector<Int> mods;std::vector<DynamicModSupplier> dynmods;std::vector<std::vector<Int>> table_coeff;std::vector<Int> table_coeffinv;void precalc(std::vector<Int> new_mods){mods = std::move(new_mods);dynmods.resize(mods.size());for(size_t i=0; i<mods.size(); i++) dynmods[i] = DynamicModSupplier(mods[i]);int nmods = mods.size();table_coeff.assign(nmods+1, std::vector<Int>(nmods, 1));for(int j=0; j<nmods; j++){for(int k=0; k<nmods; k++) table_coeff[j+1][k] = table_coeff[j][k];for(int k=j+1; k<nmods; k++) table_coeff[j+1][k] = dynmods[k].mul(table_coeff[j+1][k], mods[j] % mods[k]);}table_coeffinv.resize(nmods);for(int i=0; i<nmods; i++) table_coeffinv[i] = dynmods[i].inv(table_coeff[i][i]);}FinishType calc(const std::vector<Int>& x) const {int nmods = mods.size();std::vector<Int> table_const(nmods);FinishType res = 0;FinishType res_coeff = 1;for(int j=0; j<nmods; j++){Int t = dynmods[j].mul(dynmods[j].sub(x[j], table_const[j]), table_coeffinv[j]);for(int k=j+1; k<nmods; k++){table_const[k] = dynmods[k].muladd(t, table_coeff[j][k], table_const[k]);}res += res_coeff * FinishType(t);res_coeff *= mods[j];}return res;}std::vector<FinishType> calc(std::vector<std::vector<Int>> x) const {int n = x[0].size(), m = x.size();std::vector<FinishType> res(n);std::vector<Int> buf(m);for(int i=0; i<n; i++){for(int j=0; j<m; j++) buf[j] = x[j][i];res[i] = calc(buf);}return res;}};} // namespace nachianamespace nachia{template<class Modint, unsigned int nttmod> std::vector<unsigned int>PartConvolution(std::vector<Modint> A, std::vector<Modint> B){std::vector<atcoder::static_modint<nttmod>> AA(A.size());for(std::size_t i=0; i<A.size(); i++) AA[i] = A[i].val();std::vector<atcoder::static_modint<nttmod>> BB(B.size());for(std::size_t i=0; i<B.size(); i++) BB[i] = B[i].val();auto AB = atcoder::convolution(AA, BB);std::vector<unsigned int> res(AB.size());for(std::size_t i=0; i<AB.size(); i++) res[i] = AB[i].val();return res;}template<class Modint>std::vector<Modint> Convolution(std::vector<Modint> A, std::vector<Modint> B){auto Q1 = PartConvolution<Modint, 998244353>(A, B);auto Q2 = PartConvolution<Modint, 897581057>(A, B);auto Q3 = PartConvolution<Modint, 880803841>(A, B);GarnerMod<Modint> garner;garner.precalc({ 998244353, 897581057, 880803841 });return garner.calc({ Q1, Q2, Q3 });}} // namespace nachianamespace nachia{template<class Modint>Modint KthTermOfRationalGF(std::vector<Modint> denom,std::vector<Modint> numer,unsigned long long K){assert(denom.size() != 0);assert(denom[0].val() != 0);if(denom.size() < numer.size()) denom.resize(numer.size());if(denom.size() > numer.size()) numer.resize(denom.size());int n = (int)denom.size();while(K != 0){auto Qn = denom;Qn.push_back(Modint(0));for(int i=1; i<n; i+=2) Qn[i] = -Qn[i];int f = K % 2;denom = Convolution(denom, Qn);for(int i=0; i<n; i++) denom[i] = denom[i*2];denom.resize(n);numer = Convolution(numer, Qn);for(int i=0; i<n; i++) numer[i] = numer[i*2+f];numer.resize(n);K /= 2;}return numer[0] / denom[0];}// divisor of fractional representation// and first termstemplate<class Modint>Modint KthTermOfLinearRecurrence(std::vector<Modint> denom,std::vector<Modint> firstTerms,unsigned long long K){assert(denom.size() <= firstTerms.size());firstTerms.resize(denom.size());auto numer = Convolution(firstTerms, denom);numer.resize(denom.size());return KthTermOfRationalGF(std::move(denom), std::move(numer), K);}} // namespace nachianamespace nachia{template<unsigned int MOD>struct StaticModint{private:using u64 = unsigned long long;unsigned int x;public:using my_type = StaticModint;template< class Elem >static Elem safe_mod(Elem x){if(x < 0){if(0 <= x+MOD) return x + MOD;return MOD - ((-(x+MOD)-1) % MOD + 1);}return x % MOD;}StaticModint() : x(0){}StaticModint(const my_type& a) : x(a.x){}StaticModint& operator=(const my_type&) = default;template< class Elem >StaticModint(Elem v) : x(safe_mod(v)){}unsigned int operator*() const { return x; }my_type& operator+=(const my_type& r) { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; }my_type operator+(const my_type& r) const { my_type res = *this; return res += r; }my_type& operator-=(const my_type& r) { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; }my_type operator-(const my_type& r) const { my_type res = *this; return res -= r; }my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; }my_type& operator*=(const my_type& r){ x = (u64)x * r.x % MOD; return *this; }my_type operator*(const my_type& r) const { my_type res = *this; return res *= r; }bool operator==(const my_type& r) const { return x == r.x; }my_type pow(unsigned long long i) const {my_type a = *this, res = 1;while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; }return res;}my_type inv() const { return my_type(ExtGcd(x, MOD).first); }unsigned int val() const { return x; }int hval() const { return int(x > MOD/2 ? x - MOD : x); }static constexpr unsigned int mod() { return MOD; }static my_type raw(unsigned int val) { auto res = my_type(); res.x = val; return res; }my_type& operator/=(const my_type& r){ return operator*=(r.inv()); }my_type operator/(const my_type& r) const { return operator*(r.inv()); }};} // namespace nachiausing Modint = nachia::StaticModint<998244353>;namespace nachia{template<unsigned int MOD>struct PrimitiveRoot{using u64 = unsigned long long;static constexpr u64 powm(u64 a, u64 i) {u64 res = 1, aa = a;for( ; i; i /= 2){if(i & 1) res = res * aa % MOD;aa = aa * aa % MOD;}return res;}static constexpr bool ExamineVal(unsigned int g){u64 t = MOD - 1;for(u64 d=2; d*d<=t; d+=1+(d&1)) if(t % d == 0){if(powm(g, (MOD - 1) / d) == 1) return false;while(t % d == 0) t /= d;}if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false;return true;}static constexpr unsigned int GetVal(){for(u64 x=2; x<MOD; x++) if(ExamineVal(x)) return x;return 0;}static const unsigned int val = GetVal();};} // namespace nachianamespace nachia{template<class Modint>class Comb{private:std::vector<Modint> F;std::vector<Modint> iF;public:void extend(int newN){int prevN = (int)F.size() - 1;if(prevN >= newN) return;F.resize(newN+1);iF.resize(newN+1);for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i);iF[newN] = F[newN].inv();for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i);}Comb(int n = 1){F.assign(2, Modint(1));iF.assign(2, Modint(1));extend(n);}Modint factorial(int n) const { return F[n]; }Modint invFactorial(int n) const { return iF[n]; }Modint invOf(int n) const { return iF[n] * F[n-1]; }Modint comb(int n, int r) const {if(n < 0 || n < r || r < 0) return Modint(0);return F[n] * iF[r] * iF[n-r];}Modint invComb(int n, int r) const {if(n < 0 || n < r || r < 0) return Modint(0);return iF[n] * F[r] * F[n-r];}Modint perm(int n, int r) const {if(n < 0 || n < r || r < 0) return Modint(0);return F[n] * iF[n-r];}Modint invPerm(int n, int r) const {if(n < 0 || n < r || r < 0) return Modint(0);return iF[n] * F[n-r];}Modint operator()(int n, int r) const { return comb(n,r); }};} // namespace nachianamespace nachia{int Popcount(unsigned long long c) noexcept {#ifdef __GNUC__return __builtin_popcountll(c);#elsec = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3));c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5));c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17));c = (c * (~0ull/257)) >> 56;return c;#endif}// please ensure x != 0int MsbIndex(unsigned long long x) noexcept {#ifdef __GNUC__return 63 - __builtin_clzll(x);#elseusing u64 = unsigned long long;int q = (x >> 32) ? 32 : 0;auto m = x >> q;constexpr u64 hi = 0x88888888;constexpr u64 mi = 0x11111111;m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35;m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 31;q += (m & 0xf) << 2;q += 0x3333333322221100 >> (((x >> q) & 0xf) << 2) & 0xf;return q;#endif}// please ensure x != 0int LsbIndex(unsigned long long x) noexcept {#ifdef __GNUC__return __builtin_ctzll(x);#elsereturn MsbIndex(x & -x);#endif}}namespace nachia {template<class mint>struct NttInterface{template<class Iter>void Butterfly(Iter, int) const {}template<class Iter>void IButterfly(Iter, int) const {}template<class Iter>void BitReversal(Iter a, int N) const {for(int i=0, j=0; j<N; j++){if(i < j) std::swap(a[i], a[j]);for(int k = N>>1; k > (i^=k); k>>=1);}}};} // namespace nachia#include <iterator>#include <array>namespace nachia{template <class mint>struct Ntt : NttInterface<mint> {using u32 = unsigned int;using u64 = unsigned long long;static int ceil_pow2(int n) {int x = 0;while ((1U << x) < (u32)(n)) x++;return x;}static constexpr int bsf_constexpr(unsigned int n) {int x = 0;while (!(n & (1 << x))) x++;return x;}struct fft_info {static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val;static constexpr int rank2 = bsf_constexpr(mint::mod()-1);using RootTable = std::array<mint, rank2+1>;RootTable root, iroot, rate3, irate3;fft_info(){root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);iroot[rank2] = root[rank2].inv();for(int i=rank2-1; i>=0; i--){root[i] = root[i+1] * root[i+1];iroot[i] = iroot[i+1] * iroot[i+1];}mint prod = 1, iprod = 1;for(int i=0; i<=rank2-3; i++){rate3[i] = root[i+3] * prod;irate3[i] = iroot[i+3] * iprod;prod *= iroot[i+3];iprod *= root[i+3];}}};template<class RandomAccessIterator>void ButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const {static const fft_info info;int h = n * stride;while(repeat--){int len = 1;int p = h;if(ceil_pow2(n)%2 == 1){p >>= 1;for(int i=0; i<p; i++){mint l = a[i], r = a[i+p];a[i] = l+r; a[i+p] = l-r;}len <<= 1;}for( ; p > stride; ){p >>= 2;mint rot = 1, imag = info.root[2];u64 mod2 = u64(mint::mod()) * mint::mod();int offset = p;for(int s=0; s<len; s++){if(s) rot *= info.rate3[LsbIndex(~(u32)(s-1))];mint rot2 = rot * rot;mint rot3 = rot2 * rot;for(int i=offset-p; i<offset; i++){u64 a0 = u64(a[i].val());u64 a1 = u64(a[i+p].val()) * rot.val();u64 a2 = u64(a[i+2*p].val()) * rot2.val();u64 a3 = u64(a[i+3*p].val()) * rot3.val();u64 a1na3imag = u64(mint(a1 + mod2 - a3).val()) * imag.val();u64 na2 = mod2 - a2;a[i] = a0 + a2 + a1 + a3;a[i+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3));a[i+2*p] = a0 + na2 + a1na3imag;a[i+3*p] = a0 + na2 + (mod2 - a1na3imag);}offset += p << 2;}len <<= 2;}a += h;}}template<class RandomAccessIterator>void Butterfly(RandomAccessIterator a, int n) const {ButterflyLayered(a, n, 1, 1);}template<class RandomAccessIterator>void IButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const {static const fft_info info;constexpr int MOD = mint::mod();while(repeat--){int len = n;int p = stride;for( ; 2 < len; ){len >>= 2;mint irot = 1, iimag = info.iroot[2];int offset = p;for(int s=0; s<len; s++){if(s) irot *= info.irate3[LsbIndex(~(u32)(s-1))];mint irot2 = irot * irot;mint irot3 = irot2 * irot;for(int i=offset-p; i<offset; i++){u64 a0 = a[i].val();u64 a1 = a[i+p].val();u64 a2 = a[i+2*p].val();u64 a3 = a[i+3*p].val();u64 a2na3iimag = mint((a2 + MOD - a3) * iimag.val()).val();a[i] = a0 + a1 + a2 + a3;a[i+p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val();a[i+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val();a[i+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val();}offset += p << 2;}p <<= 2;}if(len == 2){for(int i=0; i<p; i++){mint l = a[i], r = a[i+p];a[i] = l+r; a[i+p] = l-r;}p <<= 1;}a += p;}}template<class RandomAccessIterator>void IButterfly(RandomAccessIterator a, int n) const {IButterflyLayered(a, n, 1, 1);}};} // namespace nachianamespace nachia {template<class Elem, class NttInst = Ntt<Elem>>struct FpsNtt {public:using Fps = FpsNtt;using ElemTy = Elem;static constexpr unsigned int MOD = Elem::mod();static constexpr int CONV_THRES = 30;static const NttInst nttInst;static const unsigned int zeta = nachia::PrimitiveRoot<MOD>::GetVal();private:using u32 = unsigned int;static Elem ZeroElem() noexcept { return Elem(0); }static Elem OneElem() noexcept { return Elem(1); }static Comb<Elem> comb;std::vector<Elem> a;int RSZ(int& sz) const { return sz = (sz < 0 ? size() : sz); }public:int size() const noexcept { return a.size(); }Elem& operator[](int x) noexcept { return a[x]; }const Elem& operator[](int x) const noexcept { return a[x]; }Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); }static Comb<Elem>& GetComb() { return comb; }static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); }Fps move(){ return std::move(*this); }Fps& set(int i, Elem c){ a[i] = c; return *this; }Fps& removeLeadingZeros(){int newsz = size();while(newsz && a[newsz-1].val() == 0) newsz--;a.resize(newsz);if((int)a.capacity() / 4 > newsz) a.shrink_to_fit();return *this;}FpsNtt(){}FpsNtt(int sz) : a(sz, ZeroElem()) {}FpsNtt(int sz, Elem e) : a(sz, e) {}FpsNtt(std::vector<Elem>&& src) : a(std::move(src)) {}FpsNtt(const std::vector<Elem>& src) : a(src) {}Fps& ntt() {capSize(BestNttSize(size()));nttInst.Butterfly(a.begin(), size());return *this;}Fps& intt() {nttInst.IButterfly(a.begin(), a.size());return times(Elem::raw(size()).inv());}Fps nttDouble(Fps vanilla) const {int n = size();assert(n != 0 && n == (n&-n)); // n is a power of 2Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n*2));Elem qq = OneElem();for(int i=0; i<n; i++){ vanilla[i] *= qq; qq *= q; }vanilla.ntt();Fps res = clip(0, n*2);for(int i=0; i<n; i++) res[n+i] = vanilla[i];return res;}Fps nttDouble() const { return nttDouble(clip().intt().move()); }// Fps res(resSz);// for(int j=0; j<resSz-destL && j+srcL < srcR; j++) res[j+destL] = a.getCoeff(j+srcL)// if srcR is unspecified -> srcR = max(srcL, size());// if resSz is unspecified -> resSz = destL + srcR - srcLFps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const {srcR = RSZ(srcR);if(resSz < 0) resSz = destL + srcR - srcL;int rj = std::min(std::min(srcR, size()) - srcL, resSz - destL);Fps res(resSz);for(int j=std::max(0, -srcL); j<rj; j++) res[j+destL] = a[j+srcL];return res;}Fps clip() const { return *this; }Fps& capSize(int l, int r) {if(r <= (int)size()) a.resize(r);if(size() <= l) a.resize(l, ZeroElem());return *this;}Fps& capSize(int z){ a.resize(RSZ(z), ZeroElem()); return *this; }Fps& times(Elem x){ for(int i=0; i<size(); i++){ a[i] *= x; } return *this; }Fps& timesFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.factorial(i); } return *this; }Fps& timesInvFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.invFactorial(i); } return *this; }Fps& clrRange(int l, int r){ for(int i=l; i<r; i++){ a[i] = ZeroElem(); } return *this; }Fps& negate(){ for(auto& e : a){ e = -e; } return *this; }Fps& mulEach(const Fps& other, int maxi = -1){maxi = std::min(RSZ(maxi), std::min(size(), other.size()));for(int i=0; i<maxi; i++) a[i] *= other[i];return *this;}Fps& reverse(int sz = -1){ RSZ(sz); std::reverse(a.begin(), a.begin() + sz); return *this; }Fps& revRange(int l, int r = -1){ RSZ(r); std::reverse(a.begin() + l, a.begin() + r); return *this; }static Fps convolution(const Fps& a, const Fps& b, int sz = -1){if(std::min(a.size(), b.size()) <= CONV_THRES){if(a.size() > b.size()) return convolution(b, a, sz);if(sz < 0) sz = std::max(0, a.size() + b.size() - 1);std::vector<Elem> res(sz);for(int i=0; i<a.size(); i++) for(int j=0; j<b.size() && i+j<sz; j++) res[i+j] += a[i] * b[j];return res;}int Z = BestNttSize(a.size() + b.size() - 1);return a.clip(0, Z).ntt().mulEach(b.clip(0, Z).ntt()).intt().capSize(sz).move();}Fps convolve(const Fps& r, int sz = -1) const { return convolution(*this, r, sz); }// 1// ----- = 1 + f + f^2 + f^3 + ...// 1-fFps powerSum(int sz) const {RSZ(sz);if(sz == 0) return {};int q = std::min(sz, 32);Fps x = Fps(q).set(0, OneElem()).move();for(int i=1; i<q; i++) for(int j=1; j<=std::min(i,(int)a.size()-1); j++) x[i] += x[i-j] * a[j];while(x.size() < sz){int hN = x.size(), N = hN*2;Fps a = x.clip(0, N).ntt().move();Fps b = clip(0, N).ntt().mulEach(a).intt().clrRange(0,hN).ntt().mulEach(a).intt().move();for(int i=0; i<hN; i++) b[i] = x[i];std::swap(b, x);}return x.capSize(sz).move();}Fps inv(int sz = -1) const {RSZ(sz);Elem iA0 = a[0].inv();return clip(0, std::min(sz, size())).times(-iA0).set(0, ZeroElem()).powerSum(sz).times(iA0).move();}Fps& difference(){if(size() == 0) return *this;for(int i=0; i+1<size(); i++) a[i] = a[i+1] * Elem::raw(i+1);return capSize(size()-1);}Fps& integral(){if(size() == 0) return capSize(1);capSize(size()+1);comb.extend(size());for(int i=size()-1; i>=1; i--) a[i] = a[i-1] * comb.invOf(i);return set(0, ZeroElem());}Fps log(int sz = -1){RSZ(sz);assert(sz != 0);assert(a[0].val() == 1);return convolution(inv(sz), clip().difference(), sz-1).integral();}Fps exp(int sz = -1){RSZ(sz);Fps res = Fps(1).set(0, OneElem());while(res.size() < sz){auto z = res.size();auto tmp = res.capSize(z*2).log().set(0, -OneElem()).move();for(int i=0; i<z*2 && i<size(); i++) tmp[i] -= a[i];auto resntt = res.clip().ntt().mulEach(tmp.ntt()).intt().move();for(int i=z; i<z*2; i++) res[i] = -resntt[i];}return res.capSize(0, sz).move();}Fps pow(unsigned long long k, int sz = -1){int n = RSZ(sz);if(k == 0) return Fps(n).set(0, OneElem()).move();int ctz = 0;while(ctz<n && a[ctz].val() == 0) ctz++;if((unsigned long long)ctz >= (n-1) / k + 1) return Fps(n);Elem a0 = a[ctz];return clip(ctz, ctz+n-ctz*k).times(a0.inv()).log().times(Elem(k)).exp().times(a0.pow(k)).clip(0, -1, ctz*k);}auto begin(){ return a.begin(); }auto end(){ return a.end(); }auto begin() const { return a.begin(); }auto end() const { return a.end(); }std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const {std::string res = beg;bool f = false;for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); }res += en;return res;}std::vector<Elem> getVectorMoved(){ return std::move(a); }Fps& operator+=(const Fps& r){capSize(std::max(size(), r.size()));for(int i=0; i<r.size(); i++) a[i] += r[i];return *this;}Fps& operator-=(const Fps& r){capSize(std::max(size(), r.size()));for(int i=0; i<r.size(); i++) a[i] -= r[i];return *this;}Fps operator+(const Fps& r) const { return (clip(0, std::max(size(), r.size())) += r).move(); }Fps operator-(const Fps& r) const { return (clip(0, std::max(size(), r.size())) -= r).move(); }Fps operator-() const { return (clip().negate()).move(); }Fps operator*(const Fps& r) const { return convolve(r).removeLeadingZeros().move(); }Fps& operator*=(const Fps& r){ return (*this) = operator*(r); }Fps& operator*=(Elem m){ return times(m); }Fps operator*(Elem m) const { return (clip() *= m).move(); }Elem eval(Elem x) const {Elem res = 0;for(int i=size()-1; i>=0; i--) res = res * x + a[i];return res;}};template<class Elem, class NttInst> Comb<Elem> FpsNtt<Elem, NttInst>::comb;template<class Elem, class NttInst> const NttInst FpsNtt<Elem, NttInst>::nttInst;} // namespace nachiausing Fps = nachia::FpsNtt<Modint>;void testcase(){i64 N, K; cin >> N >> K;Fps fden(K+1), fnum(K+2);fden[0] = 1;rep(i,K) fden[1+i] -= 1;rep(i,K) fnum[2+i] += 1;Fps t = Fps(2).set(0,1).set(1,-1);Fps gden = t * fden - fnum.clip(-K);Fps gnum = t * fnum;gden = gden * t * t;auto ans = nachia::KthTermOfRationalGF(gden.getVectorMoved(), gnum.getVectorMoved(), N);ans += 1;cout << ans.val() << "\n";}int main(){ios::sync_with_stdio(false); cin.tie(nullptr);testcase();return 0;}