結果

問題 No.3079 Unite Japanese Prefectures
ユーザー mkawa2
提出日時 2025-03-28 23:24:33
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 519 ms / 4,000 ms
コード長 3,320 bytes
コンパイル時間 251 ms
コンパイル使用メモリ 82,604 KB
実行使用メモリ 94,364 KB
最終ジャッジ日時 2025-03-28 23:24:41
合計ジャッジ時間 7,030 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
# sys.setrecursionlimit(200005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 62)
# md = 10**9+7
md = 998244353
class UnionFind:
def __init__(self, n):
self._tree = [-1]*n
# number of connected component
self.cnt = n
def root(self, u):
stack = []
while self._tree[u] >= 0:
stack.append(u)
u = self._tree[u]
for v in stack: self._tree[v] = u
return u
def same(self, u, v):
return self.root(u) == self.root(v)
def merge(self, u, v):
u, v = self.root(u), self.root(v)
if u == v: return False
if self._tree[u] > self._tree[v]: u, v = v, u
self._tree[u] += self._tree[v]
self._tree[v] = u
self.cnt -= 1
return True
# size of connected component
def size(self, u):
return -self._tree[self.root(u)]
n, m = LI()
uvc = LLI1(m)
ct = [0]*6
uf = UnionFind(n)
for u, v, c in sorted(uvc, key=lambda x: x[2]):
if uf.merge(u, v): ct[c] += 1
dp = [[[[[[1]*(ct[5]+1) for _ in range(ct[4]+1)] for _ in range(ct[3]+1)] for _ in range(ct[2]+1)] for _ in
range(ct[1]+1)] for _ in range(ct[0]+1)]
for a in range(ct[0]+1):
for b in range(ct[1]+1):
for c in range(ct[2]+1):
for d in range(ct[3]+1):
for e in range(ct[4]+1):
for f in range(ct[5]+1):
if a == b == c == d == e == f == 0:
dp[a][b][c][d][e][f] = 0
continue
p = 1/6
if f:
dp[a][b][c][d][e][f] += dp[a][b][c][d][e][f-1]*p
p = 0
p += 1/6
if e:
dp[a][b][c][d][e][f] += dp[a][b][c][d][e-1][f]*p
p = 0
p += 1/6
if d:
dp[a][b][c][d][e][f] += dp[a][b][c][d-1][e][f]*p
p = 0
p += 1/6
if c:
dp[a][b][c][d][e][f] += dp[a][b][c-1][d][e][f]*p
p = 0
p += 1/6
if b:
dp[a][b][c][d][e][f] += dp[a][b-1][c][d][e][f]*p
p = 0
p += 1/6
if a:
dp[a][b][c][d][e][f] += dp[a-1][b][c][d][e][f]*p
p = 0
if p: dp[a][b][c][d][e][f] /= 1-p
print(dp[-1][-1][-1][-1][-1][-1])
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0