結果
問題 | No.3080 Colonies on Line |
ユーザー |
👑 ![]() |
提出日時 | 2025-03-29 02:47:02 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,029 ms / 6,500 ms |
コード長 | 16,220 bytes |
コンパイル時間 | 4,915 ms |
コンパイル使用メモリ | 317,232 KB |
実行使用メモリ | 16,556 KB |
最終ジャッジ日時 | 2025-03-29 02:47:33 |
合計ジャッジ時間 | 30,933 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 35 |
ソースコード
#line 2 "modint.hpp"#include <cassert>#include <iostream>#include <set>#include <vector>template <int md> struct ModInt {using lint = long long;constexpr static int mod() { return md; }static int get_primitive_root() {static int primitive_root = 0;if (!primitive_root) {primitive_root = [&]() {std::set<int> fac;int v = md - 1;for (lint i = 2; i * i <= v; i++)while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < md; g++) {bool ok = true;for (auto i : fac)if (ModInt(g).pow((md - 1) / i) == 1) {ok = false;break;}if (ok) return g;}return -1;}();}return primitive_root;}int val_;int val() const noexcept { return val_; }constexpr ModInt() : val_(0) {}constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }constexpr ModInt(lint v) { _setval(v % md + md); }constexpr explicit operator bool() const { return val_ != 0; }constexpr ModInt operator+(const ModInt &x) const {return ModInt()._setval((lint)val_ + x.val_);}constexpr ModInt operator-(const ModInt &x) const {return ModInt()._setval((lint)val_ - x.val_ + md);}constexpr ModInt operator*(const ModInt &x) const {return ModInt()._setval((lint)val_ * x.val_ % md);}constexpr ModInt operator/(const ModInt &x) const {return ModInt()._setval((lint)val_ * x.inv().val() % md);}constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }constexpr bool operator<(const ModInt &x) const {return val_ < x.val_;} // To use std::map<ModInt, T>friend std::istream &operator>>(std::istream &is, ModInt &x) {lint t;return is >> t, x = ModInt(t), is;}constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {return os << x.val_;}constexpr ModInt pow(lint n) const {ModInt ans = 1, tmp = *this;while (n) {if (n & 1) ans *= tmp;tmp *= tmp, n >>= 1;}return ans;}static constexpr int cache_limit = std::min(md, 1 << 21);static std::vector<ModInt> facs, facinvs, invs;constexpr static void _precalculation(int N) {const int l0 = facs.size();if (N > md) N = md;if (N <= l0) return;facs.resize(N), facinvs.resize(N), invs.resize(N);for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;facinvs[N - 1] = facs.back().pow(md - 2);for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];}constexpr ModInt inv() const {if (this->val_ < cache_limit) {if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return invs[this->val_];} else {return this->pow(md - 2);}}constexpr ModInt fac() const {while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return facs[this->val_];}constexpr ModInt facinv() const {while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);return facinvs[this->val_];}constexpr ModInt doublefac() const {lint k = (this->val_ + 1) / 2;return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()): ModInt(k).fac() * ModInt(2).pow(k);}constexpr ModInt nCr(int r) const {if (r < 0 or this->val_ < r) return ModInt(0);return this->fac() * (*this - r).facinv() * ModInt(r).facinv();}constexpr ModInt nPr(int r) const {if (r < 0 or this->val_ < r) return ModInt(0);return this->fac() * (*this - r).facinv();}static ModInt binom(int n, int r) {static long long bruteforce_times = 0;if (r < 0 or n < r) return ModInt(0);if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);r = std::min(r, n - r);ModInt ret = ModInt(r).facinv();for (int i = 0; i < r; ++i) ret *= n - i;bruteforce_times += r;return ret;}// Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)// Complexity: O(sum(ks))template <class Vec> static ModInt multinomial(const Vec &ks) {ModInt ret{1};int sum = 0;for (int k : ks) {assert(k >= 0);ret *= ModInt(k).facinv(), sum += k;}return ret * ModInt(sum).fac();}// Catalan number, C_n = binom(2n, n) / (n + 1)// C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...// https://oeis.org/A000108// Complexity: O(n)static ModInt catalan(int n) {if (n < 0) return ModInt(0);return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();}ModInt sqrt() const {if (val_ == 0) return 0;if (md == 2) return val_;if (pow((md - 1) / 2) != 1) return 0;ModInt b = 1;while (b.pow((md - 1) / 2) == 1) b += 1;int e = 0, m = md - 1;while (m % 2 == 0) m >>= 1, e++;ModInt x = pow((m - 1) / 2), y = (*this) * x * x;x *= (*this);ModInt z = b.pow(m);while (y != 1) {int j = 0;ModInt t = y;while (t != 1) j++, t *= t;z = z.pow(1LL << (e - j - 1));x *= z, z *= z, y *= z;e = j;}return ModInt(std::min(x.val_, md - x.val_));}};template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};using ModInt998244353 = ModInt<998244353>;// using mint = ModInt<998244353>;// using mint = ModInt<1000000007>;#line 3 "convolution/ntt.hpp"#include <algorithm>#include <array>#line 7 "convolution/ntt.hpp"#include <tuple>#line 9 "convolution/ntt.hpp"// CUT begin// Integer convolution for arbitrary mod// with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class.// We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`.// input: a (size: n), b (size: m)// return: vector (size: n + m - 1)template <typename MODINT>std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner);constexpr int nttprimes[3] = {998244353, 167772161, 469762049};// Integer FFT (Fast Fourier Transform) for ModInt class// (Also known as Number Theoretic Transform, NTT)// is_inverse: inverse transform// ** Input size must be 2^n **template <typename MODINT> void ntt(std::vector<MODINT> &a, bool is_inverse = false) {int n = a.size();if (n == 1) return;static const int mod = MODINT::mod();static const MODINT root = MODINT::get_primitive_root();assert(__builtin_popcount(n) == 1 and (mod - 1) % n == 0);static std::vector<MODINT> w{1}, iw{1};for (int m = w.size(); m < n / 2; m *= 2) {MODINT dw = root.pow((mod - 1) / (4 * m)), dwinv = 1 / dw;w.resize(m * 2), iw.resize(m * 2);for (int i = 0; i < m; i++) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;}if (!is_inverse) {for (int m = n; m >>= 1;) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m] * w[k];a[i] = x + y, a[i + m] = x - y;}}}} else {for (int m = 1; m < n; m *= 2) {for (int s = 0, k = 0; s < n; s += 2 * m, k++) {for (int i = s; i < s + m; i++) {MODINT x = a[i], y = a[i + m];a[i] = x + y, a[i + m] = (x - y) * iw[k];}}}int n_inv = MODINT(n).inv().val();for (auto &v : a) v *= n_inv;}}template <int MOD>std::vector<ModInt<MOD>> nttconv_(const std::vector<int> &a, const std::vector<int> &b) {int sz = a.size();assert(a.size() == b.size() and __builtin_popcount(sz) == 1);std::vector<ModInt<MOD>> ap(sz), bp(sz);for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i];ntt(ap, false);if (a == b)bp = ap;elsentt(bp, false);for (int i = 0; i < sz; i++) ap[i] *= bp[i];ntt(ap, true);return ap;}long long garner_ntt_(int r0, int r1, int r2, int mod) {using mint2 = ModInt<nttprimes[2]>;static const long long m01 = 1LL * nttprimes[0] * nttprimes[1];static const long long m0_inv_m1 = ModInt<nttprimes[1]>(nttprimes[0]).inv().val();static const long long m01_inv_m2 = mint2(m01).inv().val();int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1];auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * m01_inv_m2;return (r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val()) % mod;}template <typename MODINT>std::vector<MODINT> nttconv(std::vector<MODINT> a, std::vector<MODINT> b, bool skip_garner) {if (a.empty() or b.empty()) return {};int sz = 1, n = a.size(), m = b.size();while (sz < n + m) sz <<= 1;if (sz <= 16) {std::vector<MODINT> ret(n + m - 1);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) ret[i + j] += a[i] * b[j];}return ret;}int mod = MODINT::mod();if (skip_garner orstd::find(std::begin(nttprimes), std::end(nttprimes), mod) != std::end(nttprimes)) {a.resize(sz), b.resize(sz);if (a == b) {ntt(a, false);b = a;} else {ntt(a, false), ntt(b, false);}for (int i = 0; i < sz; i++) a[i] *= b[i];ntt(a, true);a.resize(n + m - 1);} else {std::vector<int> ai(sz), bi(sz);for (int i = 0; i < n; i++) ai[i] = a[i].val();for (int i = 0; i < m; i++) bi[i] = b[i].val();auto ntt0 = nttconv_<nttprimes[0]>(ai, bi);auto ntt1 = nttconv_<nttprimes[1]>(ai, bi);auto ntt2 = nttconv_<nttprimes[2]>(ai, bi);a.resize(n + m - 1);for (int i = 0; i < n + m - 1; i++)a[i] = garner_ntt_(ntt0[i].val(), ntt1[i].val(), ntt2[i].val(), mod);}return a;}template <typename MODINT>std::vector<MODINT> nttconv(const std::vector<MODINT> &a, const std::vector<MODINT> &b) {return nttconv<MODINT>(a, b, false);}#line 5 "formal_power_series/coeff_of_rational_function.hpp"// CUT begin// Calculate [x^N](num(x) / den(x))// - Coplexity: O(LlgLlgN) ( L = size(num) + size(den) )// - Reference: `Bostan–Mori algorithm` <https://qiita.com/ryuhe1/items/da5acbcce4ac1911f47a>template <typename Tp>Tp coefficient_of_rational_function(long long N, std::vector<Tp> num, std::vector<Tp> den) {assert(N >= 0);while (den.size() and den.back() == 0) den.pop_back();assert(den.size());int h = 0;while (den[h] == 0) h++;N += h;den.erase(den.begin(), den.begin() + h);if (den.size() == 1) return N < int(num.size()) ? num[N] / den[0] : 0;while (N) {std::vector<Tp> g = den;for (size_t i = 1; i < g.size(); i += 2) { g[i] = -g[i]; }auto conv_num_g = nttconv(num, g);num.resize((conv_num_g.size() + 1 - (N & 1)) / 2);for (size_t i = 0; i < num.size(); i++) { num[i] = conv_num_g[i * 2 + (N & 1)]; }auto conv_den_g = nttconv(den, g);for (size_t i = 0; i < den.size(); i++) { den[i] = conv_den_g[i * 2]; }N >>= 1;}return num[0] / den[0];}// Find the n-th term of the sequence (0-ORIGIN)// Complexity: O(K lg K \log N)// ainit = [a_0, a_1,..., ]// c[0] = 1, \sum_j a_{i - j} * c_j = 0template <typename Tp>Tp find_kth_term(std::vector<Tp> ainit, const std::vector<Tp> c, long long n) {assert(ainit.size() + 1 == c.size());auto a = nttconv(ainit, c);a.resize(ainit.size());return coefficient_of_rational_function(n, a, c);}#line 3 "formal_power_series/test/kth_term_of_linearly_recurrent_sequence.test.cpp"#define PROBLEM "https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence"#line 5 "formal_power_series/test/kth_term_of_linearly_recurrent_sequence.test.cpp"using namespace std;#include <bits/stdc++.h>#include <iostream>#include <limits>#include <numeric>#include <type_traits>#include <bitset>#include <map>#include <unordered_map>#include <set>#include <random>using namespace std;using ll = long long;#define rep(i,n,m) for(ll (i)=(n);(i)<(m);(i)++)#define rrep(i,n,m) for(ll (i)=(n);(i)>(m);(i)--)#define LAMBDA2(x, y, ...) ([&](auto&& x, auto&& y) -> decltype(auto) { return __VA_ARGS__; })#define DivFloor(...) LAMBDA2(x, y, x / y - ((x ^ y) < 0 && x % y != 0))(__VA_ARGS__)#define DivCeil(...) LAMBDA2(x, y, x / y + ((x ^ y) >= 0 && x % y != 0))(__VA_ARGS__)const ll inf = 1e9;const ll INF = 1e18;using pll = pair<ll,ll>;using vll = vector<ll>;using vvll = vector<vector<ll>>;using vpll = vector<pair<ll,ll>>;using sll = set<ll>;using mll = map<ll,ll>;void pline(vector<int> lis){rep(i,0,lis.size()){printf ("%d",lis[i]);if (i != lis.size()-1) printf(" ");else printf("\n");}}void pline(vector<ll> lis){rep(i,0,lis.size()){printf ("%lld",lis[i]);if (i != lis.size()-1) printf(" ");else printf("\n");}}void pline(vector<bool> lis){rep(i,0,lis.size()){if (lis[i]) printf("t");else printf("f");if (i != lis.size()-1) printf(" ");else printf("\n");}}void pline(set<ll> lis){for (ll x : lis){cout << x << " ";}cout << endl;}void pline(vector<pair<ll,ll>> lis){rep(i,0,lis.size()){printf ("/%lld,%lld/",lis[i].first,lis[i].second);if (i != lis.size()-1) printf(" ");else printf("\n");}}int main() {ll N,k;cin >> N >> k;vector<ModInt<998244353>> A(k+3,0), B(2*k+4,0);A[k+2] -= 1;A[2] = 1;B[0] += 1;B[1] -= 4;B[2] += 5;B[3] -= 2;B[k+1] += 1;B[k+2] -= 3;B[k+3] += 2;B[2*k+2] += 1;B[2*k+3] -= 1;auto nth_coeff = coefficient_of_rational_function(N, A, B);cout << nth_coeff+1 << endl;}/*https://yukicoder.me/problems/no/3080p = ( (x-x^(k+1))(p+(( (x^(k+1)*p+1) ) / (1-x))) ) / (1-x)q = (( (x^(k+1)*p+1) ) / (1-x))https://www.wolframalpha.com/input?i=Solve+for+p%3A+p+%3D+%28+%28x-x%5E%28k%2B1%29%29%28p%2B%28%28+%28x%5E%28k%2B1%29*p%2B1%29+%29+%2F+%281-x%29%29%29+%29+%2F+%281-x%29&lang=ja答は 1 + [x^(N-1)] P(x) / (1-x)https://www.wolframalpha.com/input?i=%28%281+-+3+x+%2B+2+x%5E2+%2B+x%5E%281+%2B+k%29+-+2+x%5E%282+%2B+k%29+%2B+x%5E%282+%2B+2+k%29%29%281-x%29%29&lang=ja*/