結果

問題 No.3059 Range Tournament
ユーザー The Forsaking
提出日時 2025-03-30 22:11:24
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 3,782 bytes
コンパイル時間 1,142 ms
コンパイル使用メモリ 124,856 KB
実行使用メモリ 138,576 KB
最終ジャッジ日時 2025-03-30 22:13:05
合計ジャッジ時間 8,215 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 10 TLE * 17
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:85:42: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   85 |     for (int i = 1; i < n + 1; i++) scanf("%d", w + i), f[i][0] = w[i];
      |                                     ~~~~~^~~~~~~~~~~~~
main.cpp:95:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   95 |         scanf("%d%d", &l, &r);
      |         ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #

#include <iostream>
#include <sstream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <queue> 
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <ctime>
#include <assert.h>
#include <deque>
#include <list>
#include <stack>
#include <numeric>
#include <iomanip>

using namespace std;
 
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef pair<long long , long long> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<int, pii> piii;
typedef pair<int, long long > pil;
typedef pair<long long, pii> plii;
typedef pair<double, int> pdi;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ull, ull> puu;
typedef long double ld;
const int N = 2000086, MOD = 1e9 + 7, INF = 0x3f3f3f3f, MID = 333;
const long double EPS = 1e-9;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
// int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int n, m, cnt;
int w[N];
vector<ll> num;
ll res;

ll lowbit(ll x) { return x & -x; }
ll lcm(ll a, ll b) { return a / __gcd(a, b) * b; }
inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; }
inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; }
inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } 
inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; }
inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }



const int logn = 19;
const int maxn = 200008;
int f[maxn][logn + 1], Logn[maxn + 1];
int ans[N];

void pre() {
 Logn[1] = 0;
 Logn[2] = 1;
 for (int i = 3; i < maxn; i++) {
  Logn[i] = Logn[i / 2] + 1;
 }
}

int query(int l, int r) {
    int s = Logn[r - l + 1];
    return max(f[l][s], f[r - (1 << s) + 1][s]);
}

struct cc {
    bool operator()(const pii& a, const pii& b) const {
        return a.second - a.first != b.second - b.first ? a.second - a.first > b.second - b.first : a.first < b.first;
    }
};

int main() {
    pre();
    cin >> n;
    for (int i = 1; i < n + 1; i++) scanf("%d", w + i), f[i][0] = w[i];
    for (int j = 1; j <= logn; j++)
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
            f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);


    cin >> m;
    map<pii, int, cc> ma;
    while (m--) {
        int l, r;
        scanf("%d%d", &l, &r);
        int maxn = w[r], len = 2;
        r--;
        while (l <= r) {
            int c = (r - l + 1) % len;
            if (!c) {
                ma[{l, l + len - 1}]++;
                maxn = max(maxn, query(l, l + len - 1));
                l += len;
            } else {
                if (r > r - len / 2 + 1) ma[{r - len / 2 + 1, r}]++;
                maxn = max(maxn, query(r - len / 2 + 1, r));
                r -= len / 2;
            }
            ans[maxn]++;
            len <<= 1;
        }
    }

    while (ma.size()) {
        auto u = *ma.begin();
        ma.erase(ma.begin());
        int l = u.first.first, r = u.first.second;
        ans[query(l, r)] += u.second;
        if (r - l != 1) {
            ma[{l, (r - l + 1) / 2 + l - 1}] += u.second;
            ma[{l + (r - l + 1) / 2, r}] += u.second;
        }
    }

    for (int i = 1; i < n + 1; i++) printf("%d\n", ans[i]);
    return 0;
}
0