結果
| 問題 | 
                            No.1507 Road Blocked
                             | 
                    
| コンテスト | |
| ユーザー | 
                             lam6er
                         | 
                    
| 提出日時 | 2025-03-31 17:27:54 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 228 ms / 2,000 ms | 
| コード長 | 1,829 bytes | 
| コンパイル時間 | 253 ms | 
| コンパイル使用メモリ | 82,944 KB | 
| 実行使用メモリ | 109,016 KB | 
| 最終ジャッジ日時 | 2025-03-31 17:28:07 | 
| 合計ジャッジ時間 | 7,996 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 30 | 
ソースコード
MOD = 998244353
def main():
    import sys
    input = sys.stdin.read
    data = input().split()
    n = int(data[0])
    edges = [[] for _ in range(n+1)]
    idx = 1
    for _ in range(n-1):
        u = int(data[idx])
        v = int(data[idx+1])
        edges[u].append(v)
        edges[v].append(u)
        idx += 2
    
    # Calculate subtree sizes using non-recursive DFS with parent tracking
    size = [1] * (n + 1)
    parent = [0] * (n + 1)
    stack = [(1, -1)]  # (node, parent)
    visited = [False] * (n + 1)
    order = []
    
    while stack:
        node, p = stack.pop()
        if visited[node]:
            continue
        visited[node] = True
        parent[node] = p
        order.append(node)
        for neighbor in edges[node]:
            if not visited[neighbor]:
                stack.append((neighbor, node))
    
    # Now process nodes in reverse order to compute sizes (post-order)
    for node in reversed(order):
        for neighbor in edges[node]:
            if neighbor != parent[node]:
                size[node] += size[neighbor]
    
    inv2 = pow(2, MOD-2, MOD)
    sum_contribution = 0
    for v in range(2, n+1):
        p = parent[v]
        s = size[v]
        # Compute C(s,2) + C(n-s,2) mod MOD
        term1 = s % MOD * ((s-1) % MOD) % MOD
        term1 = term1 * inv2 % MOD
        term2 = ( (n - s) % MOD ) * ( (n - s - 1) % MOD ) % MOD
        term2 = term2 * inv2 % MOD
        sum_contribution = (sum_contribution + term1 + term2) % MOD
    
    # Compute denominator: n*(n-1)^2 // 2 mod MOD
    denom = n % MOD
    denom = denom * ((n-1) % MOD) % MOD
    denom = denom * ((n-1) % MOD) % MOD
    denom = denom * inv2 % MOD
    
    inv_denom = pow(denom, MOD-2, MOD)
    result = sum_contribution * inv_denom % MOD
    print(result)
if __name__ == "__main__":
    main()
            
            
            
        
            
lam6er