結果
| 問題 |
No.1164 GCD Products hard
|
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:28:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,556 bytes |
| コンパイル時間 | 380 ms |
| コンパイル使用メモリ | 82,476 KB |
| 実行使用メモリ | 359,012 KB |
| 最終ジャッジ日時 | 2025-03-31 17:29:57 |
| 合計ジャッジ時間 | 7,947 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | TLE * 1 -- * 26 |
ソースコード
import sys
def main():
A, B, N = map(int, sys.stdin.readline().split())
MOD = 10**9 + 7
MOD_PHI = MOD - 1 # Since MOD is prime
# Precompute c[m] for m from 1 to B
max_m = B
c = [0] * (max_m + 1)
for m in range(1, max_m + 1):
c[m] = (B // m) - ((A - 1) // m)
# Precompute pow_cm[m] = c[m]^N mod MOD_PHI, but handle c[m] = 0
pow_cm = [0] * (max_m + 1)
for m in range(1, max_m + 1):
if c[m] > 0:
pow_cm[m] = pow(c[m], N, MOD_PHI)
else:
pow_cm[m] = 0
# Sieve to compute Mobius function
mobius = [1] * (max_m + 1)
is_prime = [True] * (max_m + 1)
min_prime = [0] * (max_m + 1)
for i in range(2, max_m + 1):
if not is_prime[i]:
continue
min_prime[i] = i
for j in range(i * i, max_m + 1, i):
if is_prime[j]:
is_prime[j] = False
min_prime[j] = i # For numbers with multiple prime factors, min_prime will be set to smallest
for n in range(2, max_m + 1):
if is_prime[n]:
mobius[n] = -1
else:
temp = n
p = min_prime[temp]
cnt = 0
if temp % p == 0:
temp //= p
cnt += 1
if temp % p == 0:
# has square factor
mobius[n] = 0
else:
mobius[n] = -mobius[temp]
else:
# shouldn't happen since p is the smallest prime factor
pass
# Compute f array
f = [0] * (max_m + 1)
for k in range(1, max_m + 1):
mu_k = mobius[k]
if mu_k == 0:
continue
# Iterate over m = k * d where m <= B, d = m //k
# which means m ranges from k, 2k, ... to up to B
for m in range(k, max_m + 1, k):
if pow_cm[m] == 0:
continue
d = m // k
f[d] += mu_k * pow_cm[m]
# To handle large sums mod MOD_PHI, take modulo at each step
# But for correctness in summation, we can do mod once after
# Because summing integers could overflow, but in Python it's okay
# Compute the final product
result = 1
for d in range(1, max_m + 1):
if f[d] == 0:
continue
exponent = f[d] % MOD_PHI
if exponent < 0:
exponent += MOD_PHI
d_mod = d % MOD
result = (result * pow(d_mod, exponent, MOD)) % MOD
print(result)
if __name__ == '__main__':
main()
lam6er