結果
問題 |
No.1164 GCD Products hard
|
ユーザー |
![]() |
提出日時 | 2025-03-31 17:28:12 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,556 bytes |
コンパイル時間 | 380 ms |
コンパイル使用メモリ | 82,476 KB |
実行使用メモリ | 359,012 KB |
最終ジャッジ日時 | 2025-03-31 17:29:57 |
合計ジャッジ時間 | 7,947 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | TLE * 1 -- * 26 |
ソースコード
import sys def main(): A, B, N = map(int, sys.stdin.readline().split()) MOD = 10**9 + 7 MOD_PHI = MOD - 1 # Since MOD is prime # Precompute c[m] for m from 1 to B max_m = B c = [0] * (max_m + 1) for m in range(1, max_m + 1): c[m] = (B // m) - ((A - 1) // m) # Precompute pow_cm[m] = c[m]^N mod MOD_PHI, but handle c[m] = 0 pow_cm = [0] * (max_m + 1) for m in range(1, max_m + 1): if c[m] > 0: pow_cm[m] = pow(c[m], N, MOD_PHI) else: pow_cm[m] = 0 # Sieve to compute Mobius function mobius = [1] * (max_m + 1) is_prime = [True] * (max_m + 1) min_prime = [0] * (max_m + 1) for i in range(2, max_m + 1): if not is_prime[i]: continue min_prime[i] = i for j in range(i * i, max_m + 1, i): if is_prime[j]: is_prime[j] = False min_prime[j] = i # For numbers with multiple prime factors, min_prime will be set to smallest for n in range(2, max_m + 1): if is_prime[n]: mobius[n] = -1 else: temp = n p = min_prime[temp] cnt = 0 if temp % p == 0: temp //= p cnt += 1 if temp % p == 0: # has square factor mobius[n] = 0 else: mobius[n] = -mobius[temp] else: # shouldn't happen since p is the smallest prime factor pass # Compute f array f = [0] * (max_m + 1) for k in range(1, max_m + 1): mu_k = mobius[k] if mu_k == 0: continue # Iterate over m = k * d where m <= B, d = m //k # which means m ranges from k, 2k, ... to up to B for m in range(k, max_m + 1, k): if pow_cm[m] == 0: continue d = m // k f[d] += mu_k * pow_cm[m] # To handle large sums mod MOD_PHI, take modulo at each step # But for correctness in summation, we can do mod once after # Because summing integers could overflow, but in Python it's okay # Compute the final product result = 1 for d in range(1, max_m + 1): if f[d] == 0: continue exponent = f[d] % MOD_PHI if exponent < 0: exponent += MOD_PHI d_mod = d % MOD result = (result * pow(d_mod, exponent, MOD)) % MOD print(result) if __name__ == '__main__': main()