結果

問題 No.826 連絡網
ユーザー lam6er
提出日時 2025-03-31 17:28:40
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 243 ms / 2,000 ms
コード長 2,037 bytes
コンパイル時間 172 ms
コンパイル使用メモリ 82,896 KB
実行使用メモリ 133,456 KB
最終ジャッジ日時 2025-03-31 17:30:16
合計ジャッジ時間 4,821 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #

from bisect import bisect_right
from collections import deque

def main():
    import sys
    input = sys.stdin.read().split()
    n = int(input[0])
    p = int(input[1])
    
    if p == 1:
        print(1)
        return
    
    # Sieve of Eratosthenes to generate primes up to n
    def sieve(max_num):
        if max_num < 2:
            return []
        sieve = [True] * (max_num + 1)
        sieve[0] = sieve[1] = False
        for i in range(2, int(max_num ** 0.5) + 1):
            if sieve[i]:
                sieve[i*i : max_num + 1 : i] = [False] * len(sieve[i*i : max_num + 1 : i])
        primes = [i for i, is_prime in enumerate(sieve) if is_prime]
        return primes
    
    primes = sieve(n)
    if not primes:
        print(1 if p == 1 else 0)
        return
    
    # Factorize p to get initial primes
    def factorize(num):
        factors = {}
        if num == 1:
            return factors
        i = 2
        while i * i <= num:
            while num % i == 0:
                factors[i] = factors.get(i, 0) + 1
                num = num // i
            i += 1
        if num > 1:
            factors[num] = 1
        return factors.keys()
    
    initial_factors = factorize(p)
    primes_set = set(primes)
    initial_primes = [prime for prime in initial_factors if prime in primes_set]
    
    if not initial_primes:
        print(1)
        return
    
    primes_sorted = primes
    visited = set(initial_primes)
    queue = deque(initial_primes)
    
    while queue:
        current_p = queue.popleft()
        max_q = n // current_p
        idx = bisect_right(primes_sorted, max_q)
        for q in primes_sorted[:idx]:
            if q not in visited:
                visited.add(q)
                queue.append(q)
    
    # Mark all multiples of visited primes
    marked = [False] * (n + 1)
    for prime in visited:
        for multiple in range(prime, n + 1, prime):
            marked[multiple] = True
    
    count = sum(marked)
    print(count)

if __name__ == '__main__':
    main()
0