結果

問題 No.577 Prime Powerful Numbers
ユーザー lam6er
提出日時 2025-03-31 17:33:16
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,588 bytes
コンパイル時間 160 ms
コンパイル使用メモリ 82,056 KB
実行使用メモリ 142,180 KB
最終ジャッジ日時 2025-03-31 17:33:55
合計ジャッジ時間 6,592 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 1
other TLE * 1 -- * 9
権限があれば一括ダウンロードができます

ソースコード

diff #

import math

def generate_s_list():
    sieve_size = 10**6
    sieve = [True] * (sieve_size + 1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(math.sqrt(sieve_size)) + 1):
        if sieve[i]:
            sieve[i*i : sieve_size+1 : i] = [False] * len(sieve[i*i : sieve_size+1 : i])
    primes = [i for i, is_p in enumerate(sieve) if is_p]
    s_set = set()
    for p in primes:
        a = 1
        while True:
            power = p ** a
            if power > sieve_size:
                break
            s_set.add(power)
            a += 1
    return sorted(s_set)

s_list = generate_s_list()

def is_prime(n):
    if n <= 1:
        return False
    elif n <= 3:
        return True
    elif n % 2 == 0:
        return False
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in bases:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def is_prime_power(x):
    if x < 2:
        return False
    if is_prime(x):
        return True
    max_k = x.bit_length()
    for k in range(max_k, 1, -1):
        low = 2
        high = x
        found = False
        while low <= high:
            mid = (low + high) // 2
            m = pow(mid, k)
            if m == x:
                if is_prime(mid):
                    return True
                else:
                    break
            elif m < x:
                low = mid + 1
            else:
                high = mid - 1
    return False

small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

Q = int(input())
for _ in range(Q):
    N = int(input())
    found = False
    # Step 1: Check precomputed prime powers
    for s in s_list:
        if s > N - 2:
            continue
        rem = N - s
        if rem >= 2 and is_prime_power(rem):
            found = True
            break
    if found:
        print("Yes")
        continue
    # Step 2: Check small primes' powers
    for p in small_primes:
        a = 1
        while True:
            current = pow(p, a)
            if current > N - 2:
                break
            rem = N - current
            if rem >= 2 and is_prime_power(rem):
                found = True
                break
            a += 1
        if found:
            break
    print("Yes" if found else "No")
0