結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:35:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,986 bytes |
| コンパイル時間 | 213 ms |
| コンパイル使用メモリ | 82,372 KB |
| 実行使用メモリ | 69,936 KB |
| 最終ジャッジ日時 | 2025-03-31 17:36:45 |
| 合計ジャッジ時間 | 10,417 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 3 TLE * 1 -- * 59 |
ソースコード
import sys
mod = 998244353
def readints():
return list(map(int, sys.stdin.readline().split()))
def main():
import sys
sys.setrecursionlimit(1 << 25)
N = int(sys.stdin.readline())
M0 = []
for _ in range(N):
M0.append(list(map(int, sys.stdin.readline().split())))
M1 = []
for _ in range(N):
M1.append(list(map(int, sys.stdin.readline().split())))
# List of evaluation points x = 0, 1, 2, ..., N
xs = list(range(N+1))
ys = []
# Precompute all determinants for x in 0..N
for x in xs:
# Compute matrix M = M0 + x*M1
mat = [ [ (M0[i][j] + x * M1[i][j]) % mod for j in range(N)] for i in range(N)]
det = 1
sign = 1
mat = [row[:] for row in mat] # make a copy
for i in range(N):
# Find pivot in column i
pivot = -1
for j in range(i, N):
if mat[j][i] != 0:
pivot = j
break
if pivot == -1:
det = 0
break
if pivot != i:
# Swap rows
mat[i], mat[pivot] = mat[pivot], mat[i]
sign *= -1
pivot_val = mat[i][i]
det = (det * pivot_val) % mod
inv_pivot = pow(pivot_val, mod-2, mod)
for j in range(i+1, N):
factor = (mat[j][i] * inv_pivot) % mod
# Subtract factor * row i from row j
for k in range(i, N):
mat[j][k] = (mat[j][k] - factor * mat[i][k]) % mod
if det == 0:
final_det = 0
else:
final_det = (det * sign) % mod
ys.append(final_det)
# Now interpolate to find coefficients of the polynomial
# Using Lagrange interpolation
a = [0]*(N+1)
for i in range(N+1):
xi = xs[i]
yi = ys[i]
# Compute the Lagrange basis polynomial L_i
L = [0]*(N+1)
L[0] = 1
denom = 1
for j in range(N+1):
if j == i:
continue
# multiply by (x - xs[j]) / (xi - xj)
# to construct the numerator and denominator
denom = (denom * (xi - xs[j])) % mod
# Multiply L by (x - xs[j])
# as a polynomial, shifting degrees
new_L = [0]*(len(L)+1)
for k in range(len(L)):
new_L[k] = (new_L[k] - xs[j] * L[k]) % mod
new_L[k+1] = (new_L[k+1] + L[k]) % mod
L = new_L[:N+1] # truncate if necessary
# Compute inv_denom = 1/denom
inv_denom = pow(denom, mod-2, mod)
# Multiply L by yi * inv_denom and add to a
for k in range(N+1):
term = (L[k] * yi) % mod
term = (term * inv_denom) % mod
a[k] = (a[k] + term) % mod
for coeff in a:
print(coeff % mod)
if __name__ == "__main__":
main()
lam6er