結果

問題 No.2026 Yet Another Knapsack Problem
ユーザー lam6er
提出日時 2025-03-31 17:39:59
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 1,401 bytes
コンパイル時間 186 ms
コンパイル使用メモリ 82,556 KB
実行使用メモリ 78,716 KB
最終ジャッジ日時 2025-03-31 17:41:11
合計ジャッジ時間 25,126 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 35 TLE * 1 -- * 6
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def main():
import sys
input = sys.stdin.read
data = input().split()
N = int(data[0])
c = []
v = []
index = 1
for _ in range(N):
ci = int(data[index])
vi = int(data[index + 1])
c.append(ci)
v.append(vi)
index += 2
# Initialize DP table
INF = -10**18
dp = [[INF] * (N + 1) for _ in range(N + 1)]
dp[0][0] = 0
# Process each item using binary decomposition for bounded knapsack
for i in range(N):
ci = c[i]
vi = v[i]
weight = i + 1 # since items are 1-based in the problem
remaining = ci
x = 1
while remaining > 0:
curr = min(x, remaining)
# Process adding curr copies
for k in range(N, curr - 1, -1):
for w in range(N, curr * weight - 1, -1):
if dp[k - curr][w - curr * weight] != INF:
if dp[k][w] < dp[k - curr][w - curr * weight] + curr * vi:
dp[k][w] = dp[k - curr][w - curr * weight] + curr * vi
remaining -= curr
x <<= 1
# Compute the maximum for each k
for k in range(1, N + 1):
max_val = INF
for w in range(k, N + 1):
if dp[k][w] > max_val:
max_val = dp[k][w]
print(max_val)
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0