結果
| 問題 |
No.2445 奇行列式
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:45:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,008 bytes |
| コンパイル時間 | 170 ms |
| コンパイル使用メモリ | 82,172 KB |
| 実行使用メモリ | 146,744 KB |
| 最終ジャッジ日時 | 2025-03-31 17:46:03 |
| 合計ジャッジ時間 | 13,701 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 WA * 14 |
ソースコード
def main():
import sys
from sys import stdin
sys.setrecursionlimit(1 << 25)
N, B = map(int, stdin.readline().split())
MOD = 2 * B
matrix = []
for _ in range(N):
row = list(map(int, stdin.readline().split()))
matrix.append(row)
# Compute permanent mod MOD using DP with bitmask
max_mask = 1 << N
dp = [0] * max_mask
dp[0] = 1 % MOD
# Precompute masks grouped by their bit count
bits = [[] for _ in range(N+1)]
for mask in range(max_mask):
cnt = bin(mask).count('1')
bits[cnt].append(mask)
for k in range(N):
row = matrix[k]
for mask in bits[k]:
val = dp[mask]
if val == 0:
continue
for j in range(N):
if not (mask & (1 << j)):
new_mask = mask | (1 << j)
dp[new_mask] = (dp[new_mask] + val * row[j]) % MOD
permanent = dp[(1 << N) -1] % MOD
# Compute determinant mod MOD using Gaussian elimination
def det_mod(mat, mod):
n = len(mat)
mat = [row[:] for row in mat]
det = 1 % mod
for i in range(n):
# Find the pivot with non-zero element
pivot = -1
for j in range(i, n):
if mat[j][i] % mod != 0:
pivot = j
break
if pivot == -1:
return 0 % mod
if pivot != i:
mat[i], mat[pivot] = mat[pivot], mat[i]
det = (-det) % mod
# Multiply the inverse of the pivot element to the current row
a = mat[i][i] % mod
g, x, y = extended_gcd(a, mod)
if g != 1:
return 0 % mod
inv = x % mod
det = (det * a) % mod # Multiply by the pivot before row operations
# Scale the pivot row to make the leading coefficient 1
for j in range(i, n):
mat[i][j] = (mat[i][j] * inv) % mod
# Eliminate other rows
for k in range(n):
if k == i:
continue
factor = mat[k][i] % mod
if factor == 0:
continue
for j in range(i, n):
mat[k][j] = (mat[k][j] - factor * mat[i][j]) % mod
# Calculate the product of the diagonal elements
for i in range(n):
det = (det * mat[i][i]) % mod
return det
def extended_gcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = extended_gcd(b % a, a)
return (g, x - (b // a) * y, y)
determinant = det_mod(matrix, MOD) % MOD
# Compute (permanent - determinant) / 2 mod B
diff = (permanent - determinant) % MOD
# Ensure diff is even and non-negative
if diff % 2 != 0:
diff = (diff + MOD) % MOD
ans = (diff // 2) % B
print(ans)
if __name__ == '__main__':
main()
lam6er