結果
| 問題 |
No.2058 Binary String
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:52:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 137 ms / 2,000 ms |
| コード長 | 1,032 bytes |
| コンパイル時間 | 333 ms |
| コンパイル使用メモリ | 82,700 KB |
| 実行使用メモリ | 66,492 KB |
| 最終ジャッジ日時 | 2025-03-31 17:52:55 |
| 合計ジャッジ時間 | 3,484 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 23 |
ソースコード
MOD = 998244353
def main():
import sys
N, K = map(int, sys.stdin.readline().split())
if N == 1:
if K == 0:
print(1)
else:
print(0)
return
n = N - 1
# Precompute m^K mod MOD for m in 0..n
pow_mK = [0] * (n + 1)
pow_mK[0] = 1 if K == 0 else 0
for m in range(1, n + 1):
pow_mK[m] = pow(m, K, MOD)
# Precompute factorial and inverse factorial modulo MOD
fact = [1] * (n + 1)
for i in range(1, n + 1):
fact[i] = fact[i - 1] * i % MOD
inv_fact = [1] * (n + 1)
inv_fact[n] = pow(fact[n], MOD - 2, MOD)
for i in range(n - 1, -1, -1):
inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD
total = 0
for m in range(0, n + 1):
# Compute C(n, m) = fact[n] * inv_fact[m] * inv_fact[n - m] mod MOD
c = fact[n] * inv_fact[m] % MOD
c = c * inv_fact[n - m] % MOD
term = c * pow_mK[m] % MOD
total = (total + term) % MOD
print(total)
if __name__ == "__main__":
main()
lam6er