結果
問題 |
No.2058 Binary String
|
ユーザー |
![]() |
提出日時 | 2025-03-31 17:52:18 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 137 ms / 2,000 ms |
コード長 | 1,032 bytes |
コンパイル時間 | 333 ms |
コンパイル使用メモリ | 82,700 KB |
実行使用メモリ | 66,492 KB |
最終ジャッジ日時 | 2025-03-31 17:52:55 |
合計ジャッジ時間 | 3,484 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
MOD = 998244353 def main(): import sys N, K = map(int, sys.stdin.readline().split()) if N == 1: if K == 0: print(1) else: print(0) return n = N - 1 # Precompute m^K mod MOD for m in 0..n pow_mK = [0] * (n + 1) pow_mK[0] = 1 if K == 0 else 0 for m in range(1, n + 1): pow_mK[m] = pow(m, K, MOD) # Precompute factorial and inverse factorial modulo MOD fact = [1] * (n + 1) for i in range(1, n + 1): fact[i] = fact[i - 1] * i % MOD inv_fact = [1] * (n + 1) inv_fact[n] = pow(fact[n], MOD - 2, MOD) for i in range(n - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD total = 0 for m in range(0, n + 1): # Compute C(n, m) = fact[n] * inv_fact[m] * inv_fact[n - m] mod MOD c = fact[n] * inv_fact[m] % MOD c = c * inv_fact[n - m] % MOD term = c * pow_mK[m] % MOD total = (total + term) % MOD print(total) if __name__ == "__main__": main()