結果

問題 No.1998 Manhattan Restaurant
ユーザー lam6er
提出日時 2025-03-31 17:56:11
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 6,597 bytes
コンパイル時間 252 ms
コンパイル使用メモリ 82,848 KB
実行使用メモリ 252,620 KB
最終ジャッジ日時 2025-03-31 17:57:34
合計ジャッジ時間 14,337 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 10 WA * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

def main():
    N = int(sys.stdin.readline())
    points = []
    for _ in range(N):
        X, Y = map(int, sys.stdin.readline().split())
        u = X + Y
        v = X - Y
        points.append((u, v))
    
    if N == 1:
        print(0)
        return
    
    # Pre-sort the points by u and by v
    sorted_u = sorted(points, key=lambda x: x[0])
    sorted_v = sorted(points, key=lambda x: x[1])
    
    # Compute global min and max for initial checks
    min_u_all = sorted_u[0][0]
    max_u_all = sorted_u[-1][0]
    min_v_all = sorted_v[0][1]
    max_v_all = sorted_v[-1][1]
    
    # Calculate the maximum possible D for a single restaurant scenario
    def compute_D_single():
        span_u = max_u_all - min_u_all
        span_v = max_v_all - min_v_all
        return max(span_u // 2, span_v // 2)
    
    D_single = compute_D_single()
    
    # Binary search setup
    low = 0
    high = D_single
    answer = high
    
    def is_possible(D):
        # Check if all points can be covered by a single square
        if (max_u_all - min_u_all) <= 2 * D and (max_v_all - min_v_all) <= 2 * D:
            return True
        
        # Check splits along sorted_u
        n = len(sorted_u)
        
        # Precompute prefix arrays for u sorted points
        prefix_min_u = [0] * n
        prefix_max_u = [0] * n
        prefix_min_v = [0] * n
        prefix_max_v = [0] * n
        
        current_min_u = sorted_u[0][0]
        current_max_u = current_min_u
        current_min_v = sorted_u[0][1]
        current_max_v = current_min_v
        prefix_min_u[0] = current_min_u
        prefix_max_u[0] = current_max_u
        prefix_min_v[0] = current_min_v
        prefix_max_v[0] = current_max_v
        
        for i in range(1, n):
            u, v = sorted_u[i]
            current_min_u = min(current_min_u, u)
            current_max_u = max(current_max_u, u)
            current_min_v = min(current_min_v, v)
            current_max_v = max(current_max_v, v)
            prefix_min_u[i] = current_min_u
            prefix_max_u[i] = current_max_u
            prefix_min_v[i] = current_min_v
            prefix_max_v[i] = current_max_v
        
        # Precompute suffix arrays for u sorted points
        suffix_min_u = [0] * n
        suffix_max_u = [0] * n
        suffix_min_v = [0] * n
        suffix_max_v = [0] * n
        
        current_min_u = sorted_u[-1][0]
        current_max_u = current_min_u
        current_min_v = sorted_u[-1][1]
        current_max_v = current_min_v
        suffix_min_u[-1] = current_min_u
        suffix_max_u[-1] = current_max_u
        suffix_min_v[-1] = current_min_v
        suffix_max_v[-1] = current_max_v
        
        for i in range(n-2, -1, -1):
            u, v = sorted_u[i]
            current_min_u = min(current_min_u, u)
            current_max_u = max(current_max_u, u)
            current_min_v = min(current_min_v, v)
            current_max_v = max(current_max_v, v)
            suffix_min_u[i] = current_min_u
            suffix_max_u[i] = current_max_u
            suffix_min_v[i] = current_min_v
            suffix_max_v[i] = current_max_v
        
        # Check all possible splits in u-sorted order
        for i in range(n-1):
            left_span_u = prefix_max_u[i] - prefix_min_u[i]
            left_span_v = prefix_max_v[i] - prefix_min_v[i]
            if left_span_u > 2 * D or left_span_v > 2 * D:
                continue
            right_span_u = suffix_max_u[i+1] - suffix_min_u[i+1]
            right_span_v = suffix_max_v[i+1] - suffix_min_v[i+1]
            if right_span_u <= 2 * D and right_span_v <= 2 * D:
                return True
        
        # Check splits along sorted_v
        # Precompute prefix arrays for v sorted points
        prefix_min_u_v = [0] * n
        prefix_max_u_v = [0] * n
        prefix_min_v_v = [0] * n
        prefix_max_v_v = [0] * n
        
        current_min_u_v = sorted_v[0][0]
        current_max_u_v = current_min_u_v
        current_min_v_v = sorted_v[0][1]
        current_max_v_v = current_min_v_v
        prefix_min_u_v[0] = current_min_u_v
        prefix_max_u_v[0] = current_max_u_v
        prefix_min_v_v[0] = current_min_v_v
        prefix_max_v_v[0] = current_max_v_v
        
        for i in range(1, n):
            u, v = sorted_v[i]
            current_min_u_v = min(current_min_u_v, u)
            current_max_u_v = max(current_max_u_v, u)
            current_min_v_v = min(current_min_v_v, v)
            current_max_v_v = max(current_max_v_v, v)
            prefix_min_u_v[i] = current_min_u_v
            prefix_max_u_v[i] = current_max_u_v
            prefix_min_v_v[i] = current_min_v_v
            prefix_max_v_v[i] = current_max_v_v
        
        # Precompute suffix arrays for v sorted points
        suffix_min_u_v = [0] * n
        suffix_max_u_v = [0] * n
        suffix_min_v_v = [0] * n
        suffix_max_v_v = [0] * n
        
        current_min_u_v = sorted_v[-1][0]
        current_max_u_v = current_min_u_v
        current_min_v_v = sorted_v[-1][1]
        current_max_v_v = current_min_v_v
        suffix_min_u_v[-1] = current_min_u_v
        suffix_max_u_v[-1] = current_max_u_v
        suffix_min_v_v[-1] = current_min_v_v
        suffix_max_v_v[-1] = current_max_v_v
        
        for i in range(n-2, -1, -1):
            u, v = sorted_v[i]
            current_min_u_v = min(current_min_u_v, u)
            current_max_u_v = max(current_max_u_v, u)
            current_min_v_v = min(current_min_v_v, v)
            current_max_v_v = max(current_max_v_v, v)
            suffix_min_u_v[i] = current_min_u_v
            suffix_max_u_v[i] = current_max_u_v
            suffix_min_v_v[i] = current_min_v_v
            suffix_max_v_v[i] = current_max_v_v
        
        # Check all possible splits in v-sorted order
        for i in range(n-1):
            left_span_u = prefix_max_u_v[i] - prefix_min_u_v[i]
            left_span_v = prefix_max_v_v[i] - prefix_min_v_v[i]
            if left_span_u > 2 * D or left_span_v > 2 * D:
                continue
            right_span_u = suffix_max_u_v[i+1] - suffix_min_u_v[i+1]
            right_span_v = suffix_max_v_v[i+1] - suffix_min_v_v[i+1]
            if right_span_u <= 2 * D and right_span_v <= 2 * D:
                return True
        
        return False
    
    # Perform binary search
    while low <= high:
        mid = (low + high) // 2
        if is_possible(mid):
            answer = mid
            high = mid - 1
        else:
            low = mid + 1
    
    print(answer)

if __name__ == "__main__":
    main()
0