結果
問題 |
No.1998 Manhattan Restaurant
|
ユーザー |
![]() |
提出日時 | 2025-03-31 17:56:11 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,597 bytes |
コンパイル時間 | 252 ms |
コンパイル使用メモリ | 82,848 KB |
実行使用メモリ | 252,620 KB |
最終ジャッジ日時 | 2025-03-31 17:57:34 |
合計ジャッジ時間 | 14,337 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 10 WA * 21 |
ソースコード
import sys def main(): N = int(sys.stdin.readline()) points = [] for _ in range(N): X, Y = map(int, sys.stdin.readline().split()) u = X + Y v = X - Y points.append((u, v)) if N == 1: print(0) return # Pre-sort the points by u and by v sorted_u = sorted(points, key=lambda x: x[0]) sorted_v = sorted(points, key=lambda x: x[1]) # Compute global min and max for initial checks min_u_all = sorted_u[0][0] max_u_all = sorted_u[-1][0] min_v_all = sorted_v[0][1] max_v_all = sorted_v[-1][1] # Calculate the maximum possible D for a single restaurant scenario def compute_D_single(): span_u = max_u_all - min_u_all span_v = max_v_all - min_v_all return max(span_u // 2, span_v // 2) D_single = compute_D_single() # Binary search setup low = 0 high = D_single answer = high def is_possible(D): # Check if all points can be covered by a single square if (max_u_all - min_u_all) <= 2 * D and (max_v_all - min_v_all) <= 2 * D: return True # Check splits along sorted_u n = len(sorted_u) # Precompute prefix arrays for u sorted points prefix_min_u = [0] * n prefix_max_u = [0] * n prefix_min_v = [0] * n prefix_max_v = [0] * n current_min_u = sorted_u[0][0] current_max_u = current_min_u current_min_v = sorted_u[0][1] current_max_v = current_min_v prefix_min_u[0] = current_min_u prefix_max_u[0] = current_max_u prefix_min_v[0] = current_min_v prefix_max_v[0] = current_max_v for i in range(1, n): u, v = sorted_u[i] current_min_u = min(current_min_u, u) current_max_u = max(current_max_u, u) current_min_v = min(current_min_v, v) current_max_v = max(current_max_v, v) prefix_min_u[i] = current_min_u prefix_max_u[i] = current_max_u prefix_min_v[i] = current_min_v prefix_max_v[i] = current_max_v # Precompute suffix arrays for u sorted points suffix_min_u = [0] * n suffix_max_u = [0] * n suffix_min_v = [0] * n suffix_max_v = [0] * n current_min_u = sorted_u[-1][0] current_max_u = current_min_u current_min_v = sorted_u[-1][1] current_max_v = current_min_v suffix_min_u[-1] = current_min_u suffix_max_u[-1] = current_max_u suffix_min_v[-1] = current_min_v suffix_max_v[-1] = current_max_v for i in range(n-2, -1, -1): u, v = sorted_u[i] current_min_u = min(current_min_u, u) current_max_u = max(current_max_u, u) current_min_v = min(current_min_v, v) current_max_v = max(current_max_v, v) suffix_min_u[i] = current_min_u suffix_max_u[i] = current_max_u suffix_min_v[i] = current_min_v suffix_max_v[i] = current_max_v # Check all possible splits in u-sorted order for i in range(n-1): left_span_u = prefix_max_u[i] - prefix_min_u[i] left_span_v = prefix_max_v[i] - prefix_min_v[i] if left_span_u > 2 * D or left_span_v > 2 * D: continue right_span_u = suffix_max_u[i+1] - suffix_min_u[i+1] right_span_v = suffix_max_v[i+1] - suffix_min_v[i+1] if right_span_u <= 2 * D and right_span_v <= 2 * D: return True # Check splits along sorted_v # Precompute prefix arrays for v sorted points prefix_min_u_v = [0] * n prefix_max_u_v = [0] * n prefix_min_v_v = [0] * n prefix_max_v_v = [0] * n current_min_u_v = sorted_v[0][0] current_max_u_v = current_min_u_v current_min_v_v = sorted_v[0][1] current_max_v_v = current_min_v_v prefix_min_u_v[0] = current_min_u_v prefix_max_u_v[0] = current_max_u_v prefix_min_v_v[0] = current_min_v_v prefix_max_v_v[0] = current_max_v_v for i in range(1, n): u, v = sorted_v[i] current_min_u_v = min(current_min_u_v, u) current_max_u_v = max(current_max_u_v, u) current_min_v_v = min(current_min_v_v, v) current_max_v_v = max(current_max_v_v, v) prefix_min_u_v[i] = current_min_u_v prefix_max_u_v[i] = current_max_u_v prefix_min_v_v[i] = current_min_v_v prefix_max_v_v[i] = current_max_v_v # Precompute suffix arrays for v sorted points suffix_min_u_v = [0] * n suffix_max_u_v = [0] * n suffix_min_v_v = [0] * n suffix_max_v_v = [0] * n current_min_u_v = sorted_v[-1][0] current_max_u_v = current_min_u_v current_min_v_v = sorted_v[-1][1] current_max_v_v = current_min_v_v suffix_min_u_v[-1] = current_min_u_v suffix_max_u_v[-1] = current_max_u_v suffix_min_v_v[-1] = current_min_v_v suffix_max_v_v[-1] = current_max_v_v for i in range(n-2, -1, -1): u, v = sorted_v[i] current_min_u_v = min(current_min_u_v, u) current_max_u_v = max(current_max_u_v, u) current_min_v_v = min(current_min_v_v, v) current_max_v_v = max(current_max_v_v, v) suffix_min_u_v[i] = current_min_u_v suffix_max_u_v[i] = current_max_u_v suffix_min_v_v[i] = current_min_v_v suffix_max_v_v[i] = current_max_v_v # Check all possible splits in v-sorted order for i in range(n-1): left_span_u = prefix_max_u_v[i] - prefix_min_u_v[i] left_span_v = prefix_max_v_v[i] - prefix_min_v_v[i] if left_span_u > 2 * D or left_span_v > 2 * D: continue right_span_u = suffix_max_u_v[i+1] - suffix_min_u_v[i+1] right_span_v = suffix_max_v_v[i+1] - suffix_min_v_v[i+1] if right_span_u <= 2 * D and right_span_v <= 2 * D: return True return False # Perform binary search while low <= high: mid = (low + high) // 2 if is_possible(mid): answer = mid high = mid - 1 else: low = mid + 1 print(answer) if __name__ == "__main__": main()