結果

問題 No.243 出席番号(2)
ユーザー AC2K
提出日時 2025-04-01 00:01:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 40 ms / 2,000 ms
コード長 12,899 bytes
コンパイル時間 2,261 ms
コンパイル使用メモリ 201,960 KB
実行使用メモリ 7,324 KB
最終ジャッジ日時 2025-04-01 00:01:06
合計ジャッジ時間 4,092 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "Library/src/debug.hpp"
#ifdef ONLINE_JUDGE
#define debug(x) void(0)
#else
#define _GLIBCXX_DEBUG
#include <iostream>
#define debug(x) \
std::cerr << __LINE__ << " : " << #x << " = " << (x) << std::endl
#endif
/**
* @brief Debugger
*/
#line 2 "Library/src/math/combination.hpp"
#include <algorithm>
#include <cassert>
using namespace std;
namespace kyopro {
template <typename mint, int sz> class combination {
const int M;
mint fac[sz + 1], ifac[sz + 1];
public:
combination() : M(std::min<int>(mint::mod(), sz)) {
assert(mint::mod());
fac[0] = mint(1), ifac[0] = mint(1), fac[1] = mint(1),
ifac[1] = mint(1);
for (int i = 2; i <= M; ++i) {
fac[i] = fac[i - 1] * i;
}
ifac[M - 1] = mint(1) / fac[M - 1];
for (int i = M - 2; i > 1; --i) {
ifac[i] = ifac[i + 1] * (i + 1);
}
}
constexpr mint fact(int n) const {
assert(0 <= n && n <= sz);
return fac[n];
}
constexpr mint ifact(int n) const {
assert(0 <= n && n <= sz);
return ifac[n];
}
constexpr mint binom(int n, int r) const {
assert(n >= r);
return fact(n) * ifact(r) * ifact(n - r);
}
constexpr mint perm(int n, int r) const {
assert(n >= r);
return fact(n) * ifact(n - r);
}
};
}; // namespace kyopro
/**
* @brief Combination
*/
#line 3 "Library/src/math/static_modint.hpp"
#include <cstdint>
#include <iostream>
#line 3 "Library/src/internal/type_traits.hpp"
#include <limits>
#include <numeric>
#include <typeinfo>
#line 7 "Library/src/internal/type_traits.hpp"
namespace kyopro {
namespace internal {
template <typename... Args> struct first_enabled {};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<true, T>, Args...> {
using type = T;
};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<false, T>, Args...>
: first_enabled<Args...> {};
template <typename T, typename... Args> struct first_enabled<T, Args...> {
using type = T;
};
template <typename... Args>
using first_enabled_t = typename first_enabled<Args...>::type;
template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct int_least {
using type = first_enabled_t<std::enable_if<dgt <= 8, std::int8_t>,
std::enable_if<dgt <= 16, std::int16_t>,
std::enable_if<dgt <= 32, std::int32_t>,
std::enable_if<dgt <= 64, std::int64_t>,
std::enable_if<dgt <= 128, __int128_t>>;
};
template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct uint_least {
using type = first_enabled_t<std::enable_if<dgt <= 8, std::uint8_t>,
std::enable_if<dgt <= 16, std::uint16_t>,
std::enable_if<dgt <= 32, std::uint32_t>,
std::enable_if<dgt <= 64, std::uint64_t>,
std::enable_if<dgt <= 128, __uint128_t>>;
};
template <int dgt> using int_least_t = typename int_least<dgt>::type;
template <int dgt> using uint_least_t = typename uint_least<dgt>::type;
template <typename T>
using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>;
template <typename T>
using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>;
struct modint_base {};
template <typename T> using is_modint = std::is_base_of<modint_base, T>;
template <typename T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
// is_integral
template <typename T>
using is_integral_t =
std::enable_if_t<std::is_integral_v<T> || std::is_same_v<T, __int128_t> ||
std::is_same_v<T, __uint128_t>>;
}; // namespace internal
}; // namespace kyopro
/**
* @brief Type Traits
* @see https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8
*/
#line 3 "Library/src/math/gcd.hpp"
#include <cmath>
#include <tuple>
namespace kyopro {
template <typename T> constexpr inline T _gcd(T a, T b) noexcept {
assert(a >= 0 && b >= 0);
if (a == 0 || b == 0) return a + b;
int d = std::min<T>(__builtin_ctzll(a), __builtin_ctzll(b));
a >>= __builtin_ctzll(a), b >>= __builtin_ctzll(b);
while (a != b) {
if (!a || !b) {
return a + b;
}
if (a >= b) {
a -= b;
a >>= __builtin_ctzll(a);
} else {
b -= a;
b >>= __builtin_ctzll(b);
}
}
return a << d;
}
template <typename T>
constexpr inline T ext_gcd(T a, T b, T& x, T& y) noexcept {
x = 1, y = 0;
T nx = 0, ny = 1;
while (b) {
T q = a / b;
std::tie(a, b) = std::pair<T, T>{b, a % b};
std::tie(x, nx) = std::pair<T, T>{nx, x - nx * q};
std::tie(y, ny) = std::pair<T, T>{ny, y - ny * q};
}
return a;
}
}; // namespace kyopro
/**
* @brief gcd
*/
#line 8 "Library/src/math/static_modint.hpp"
namespace kyopro {
template <int _mod, std::enable_if_t<_mod >= 0>* = nullptr>
class modint : internal::modint_base {
using mint = modint<_mod>;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
u32 v;
constexpr u32 normalize(i64 v_) const noexcept {
v_ %= _mod;
if (v_ < 0) {
v_ += _mod;
}
return v_;
}
public:
static constexpr u32 mod() noexcept { return _mod; }
constexpr modint() noexcept : v(0) {}
constexpr modint(i64 v_) noexcept : v(normalize(v_)) {}
static mint raw(u32 a) {
mint m;
m.v = a;
return m;
}
constexpr u32 val() const noexcept { return v; }
constexpr mint& operator+=(const mint& rhs) noexcept {
v += rhs.val();
if (v >= _mod) {
v -= _mod;
}
return (*this);
}
constexpr mint& operator-=(const mint& rhs) noexcept {
v += _mod - rhs.val();
if (v >= _mod) {
v -= _mod;
}
return (*this);
}
constexpr mint& operator*=(const mint& rhs) noexcept {
v = (u64)v * rhs.val() % _mod;
return (*this);
}
constexpr mint operator+(const mint& r) const noexcept {
return mint(*this) += r;
}
constexpr mint operator-(const mint& r) const noexcept {
return mint(*this) -= r;
}
constexpr mint operator*(const mint& r) const noexcept {
return mint(*this) *= r;
}
constexpr mint& operator+=(i64 rhs) noexcept {
(*this) += mint(rhs);
return (*this);
}
constexpr mint& operator-=(i64 rhs) noexcept {
(*this) -= mint(rhs);
return (*this);
}
constexpr mint& operator*=(i64 rhs) noexcept {
(*this) *= mint(rhs);
return (*this);
}
constexpr friend mint operator+(i64 l, const mint& r) noexcept {
return mint(l) += r;
}
constexpr friend mint operator-(i64 l, const mint& r) noexcept {
return mint(l) -= r;
}
constexpr friend mint operator*(i64 l, const mint& r) noexcept {
return mint(l) *= r;
}
constexpr mint operator+(i64 r) const noexcept { return mint(*this) += r; }
constexpr mint operator-(i64 r) const noexcept { return mint(*this) -= r; }
constexpr mint operator*(i64 r) const noexcept { return mint(*this) *= r; }
constexpr mint operator-() noexcept {
return raw(mint::mod() - this->val());
}
constexpr mint& operator=(i64 r) noexcept { return (*this) = mint(r); }
constexpr bool operator==(const mint& r) const noexcept {
return (*this).val() == r.val();
}
template <typename T, internal::is_integral_t<T>* = nullptr>
constexpr mint pow(T e) const noexcept {
mint ans(1), base(*this);
while (e) {
if (e & 1) {
ans *= base;
}
base *= base;
e >>= 1;
}
return ans;
}
constexpr mint inv() const noexcept {
long long x, y;
auto d = ext_gcd((long long)_mod, (long long)v, x, y);
assert(d == 1);
return mint(y);
}
constexpr mint& operator/=(const mint& r) noexcept {
return (*this) *= r.inv();
}
constexpr mint operator/(const mint& r) const noexcept {
return mint(*this) *= r.inv();
}
constexpr friend mint operator/(const mint& l, i64 r) noexcept {
return mint(l) /= mint(r);
}
constexpr friend mint operator/(i64 l, const mint& r) noexcept {
return mint(l) /= mint(r);
}
};
}; // namespace kyopro
/**
* @brief static modint
*/
#line 2 "Library/src/stream.hpp"
#include <ctype.h>
#include <stdio.h>
#include <string>
#line 6 "Library/src/stream.hpp"
namespace kyopro {
inline void single_read(char& c) {
c = getchar_unlocked();
while (isspace(c)) c = getchar_unlocked();
}
template <typename T, internal::is_integral_t<T>* = nullptr>
inline void single_read(T& a) {
a = 0;
bool is_negative = false;
char c = getchar_unlocked();
while (isspace(c)) {
c = getchar_unlocked();
}
if (c == '-') is_negative = true, c = getchar_unlocked();
while (isdigit(c)) {
a = 10 * a + (c - '0');
c = getchar_unlocked();
}
if (is_negative) a *= -1;
}
template <typename T, internal::is_modint_t<T>* = nullptr>
inline void single_read(T& a) {
long long x;
single_read(x);
a = T(x);
}
inline void single_read(std::string& str) noexcept {
char c = getchar_unlocked();
while (isspace(c)) c = getchar_unlocked();
while (!isspace(c)) {
str += c;
c = getchar_unlocked();
}
}
template<typename T>
inline void read(T& x) noexcept {single_read(x);}
template <typename Head, typename... Tail>
inline void read(Head& head, Tail&... tail) noexcept {
single_read(head), read(tail...);
}
inline void single_write(char c) noexcept { putchar_unlocked(c); }
template <typename T, internal::is_integral_t<T>* = nullptr>
inline void single_write(T a) noexcept {
if (!a) {
putchar_unlocked('0');
return;
}
if constexpr (std::is_signed_v<T>) {
if (a < 0) putchar_unlocked('-'), a *= -1;
}
constexpr int d = std::numeric_limits<T>::digits10;
char s[d + 1];
int now = d + 1;
while (a) {
s[--now] = (char)'0' + a % 10;
a /= 10;
}
while (now <= d) putchar_unlocked(s[now++]);
}
template <typename T, internal::is_modint_t<T>* = nullptr>
inline void single_write(T a) noexcept {
single_write(a.val());
}
inline void single_write(const std::string& str) noexcept {
for (auto c : str) {
putchar_unlocked(c);
}
}
template <typename T> inline void write(T x) noexcept { single_write(x); }
template <typename Head, typename... Tail>
inline void write(Head head, Tail... tail) noexcept {
single_write(head);
putchar_unlocked(' ');
write(tail...);
}
template <typename... Args> inline void put(Args... x) noexcept {
write(x...);
putchar_unlocked('\n');
}
}; // namespace kyopro
/**
* @brief Fast IO()
*/
#line 2 "Library/src/template.hpp"
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); i++)
#define all(x) std::begin(x), std::end(x)
#define popcount(x) __builtin_popcountll(x)
using i128 = __int128_t;
using ll = long long;
using ld = long double;
using graph = std::vector<std::vector<int>>;
using P = std::pair<int, int>;
constexpr int inf = std::numeric_limits<int>::max() / 2;
constexpr ll infl = std::numeric_limits<ll>::max() / 2;
const long double pi = acosl(-1);
constexpr int dx[] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr int dy[] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
template <typename T1, typename T2> constexpr inline bool chmax(T1& a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2> constexpr inline bool chmin(T1& a, T2 b) {
return a > b && (a = b, true);
}
/**
* @brief Template
*/
#line 6 "a.cpp"
using namespace std;
using namespace kyopro;
using mint = modint<(int)1e9 + 7>;
combination<mint, (int)5e3> com;
int main() {
int n;
cin >> n;
vector<int> cnt(n);
rep(i, n) {
int a;
cin >> a;
if(a>=n)continue;
++cnt[a];
}
vector dp(n + 1, mint());
// dp[i][j] := iinvalidj
dp[0] = mint::raw(1);
rep(i, n) {
vector ndp = dp;
rep(j, i + 1) ndp[j + 1] += dp[j] * cnt[i];
swap(dp, ndp);
}
mint ans = 0;
rep(i, n + 1) {
mint ws = dp[i] * com.fact(n - i);
// cout << (dp[n][i].val()) << " \n"[i == n];
// cout << (dp[n][i] * ws).val() << " \n"[i == n];
if (i % 2 == 0) {
ans += ws;
} else {
ans -= ws;
}
}
put(ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0