結果
| 問題 |
No.8120 Aoki's Present for Takahashi
|
| コンテスト | |
| ユーザー |
googol_S0
|
| 提出日時 | 2025-04-01 21:40:49 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 834 ms / 2,000 ms |
| コード長 | 4,250 bytes |
| コンパイル時間 | 487 ms |
| コンパイル使用メモリ | 82,376 KB |
| 実行使用メモリ | 131,816 KB |
| 最終ジャッジ日時 | 2025-04-13 05:45:56 |
| 合計ジャッジ時間 | 16,212 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 20 |
ソースコード
class PrimePowerBinomial:
N_MAX = 20000000
M_MAX = (1<<30)-1
def __init__(self, _p, _q):
self.p, self.q = _p, _q
m = 1
for _ in range(_q): m *= self.p
self.M = m
self.mask = self.M - 1
self.delta = 1 if self.p == 2 and self.q >= 3 else -1
# 前計算
MX = min(self.M, self.N_MAX + 10)
self.fac = [0] * MX
self.ifac = [0] * MX
self.inv = [0] * MX
self.fac[0] = self.ifac[0] = self.inv[0] = 1
self.fac[1] = self.ifac[1] = self.inv[1] = 1
i = 2
while i < MX:
if i%self.p:
self.fac[i] = self.fac[i-1] * i % self.M
else:
self.fac[i] = self.fac[i-1]
self.fac[i+1] = self.fac[i-1] * (i+1) % self.M
i += 1
i += 1
self.ifac[MX-1] = pow(self.fac[-1], self.M // self.p * (self.p - 1) - 1, self.M)
i = MX-2
while i > 1:
if i%self.p:
self.ifac[i] = self.ifac[i+1] * (i+1) % self.M
else:
self.ifac[i] = self.ifac[i+1] * (i+1) % self.M
self.ifac[i-1] = self.ifac[i]
i -= 1
i -= 1
def C(self, n, m):
if n < m or n < 0 or m < 0: return 0
p = self.p
# Lucasの定理
if self.q == 1:
res = 1
while n:
n, n0 = divmod(n, p)
m, m0 = divmod(m, p)
if n0 < m0: return 0
res = res * self.fac[n0] % self.M
buf = self.ifac[n0-m0] * self.ifac[m0] % self.M
res = res * buf % self.M
return res
r = n-m
e0, eq, i = 0, 0, 0
res = 1
if p == 2:
# bit演算で定数倍高速化
while n:
res = res * self.fac[n& self.mask] & self.mask
res = res * self.ifac[m& self.mask] & self.mask
res = res * self.ifac[r& self.mask] & self.mask
n >>= 1
m >>= 1
r >>= 1
eps = n-m-r
e0 += eps
if e0 >= self.q: return 0
i += 1
if i >= self.q: eq += eps
if eq & 1: res = res * self.delta & self.mask
res = res * pow(p, e0, self.M) & self.mask
else:
M = self.M
while n:
res = res * self.fac[n%M] % M
res = res * self.ifac[m%M] % M
res = res * self.ifac[r%M] % M
n = n//p
m = m//p
r = r//p
eps = n-m-r
e0 += eps
if e0 >= self.q: return 0
i += 1
if i >= self.q: eq += eps
if eq & 1: res = res * self.delta % M
res = res * pow(p, e0, M) % M
return res
class ArbitraryModBinomial:
@staticmethod
def _crt(V):
def extgcd(a, b):
if b:
d, y, x = extgcd(b, a % b)
y -= (a // b) * x
return d, x, y
return a, 1, 0
x = 0; d = 1
for X, Y in V:
g, a, b = extgcd(d, Y)
x, d = (Y*b*x + d*a*X) // g, d*(Y // g)
x %= d
return x, d
def __init__(self, mod):
self.mod = mod
self.M = []
self.cs = []
for i in range(2, mod):
if i*i > mod: break
if not mod%i:
j, k = 0, 1
while not mod%i:
mod //= i
j += 1
k *= i
self.M.append(k)
self.cs.append(PrimePowerBinomial(i, j))
if mod != 1:
self.M.append(mod)
self.cs.append(PrimePowerBinomial(mod, 1))
def __call__(self, n, m):
if self.mod == 1: return 0
V = []
for i in range(len(self.cs)):
V.append((self.cs[i].C(n, m), self.M[i]))
return self._crt(V)[0]
cmb=ArbitraryModBinomial(998243353)
XXX,T=map(int,input().split())
for i in range(T):
a,b=map(int,input().split())
if i+1==XXX:
print(-1)
else:
print(cmb(b,a))
googol_S0