結果
| 問題 |
No.8123 Calculated N !
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-01 21:55:59 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 133 ms / 2,000 ms |
| コード長 | 6,376 bytes |
| コンパイル時間 | 1,494 ms |
| コンパイル使用メモリ | 117,536 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-04-01 21:56:03 |
| 合計ジャッジ時間 | 3,512 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 16 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <chrono>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 1000000007;
using Mint = ModInt<MO>;
inline long long divide(long long a, int b) {
return a / b;
}
inline long long divide(long long a, long long b) {
return a / b;
}
Int N;
int sqrtN;
vector<int> small0;
vector<Int> large0;
inline Int pi0(Int n) { return (n <= sqrtN) ? small0[n] : large0[divide(N, n)]; }
int primesLen;
vector<int> primes;
void build() {
sqrtN = sqrt(static_cast<double>(N));
small0.assign(sqrtN + 1, 0);
for (int k = 1; k <= sqrtN; ++k) {
small0[k] = k;
}
large0.assign(sqrtN + 1, 0);
for (int l = 1; l <= sqrtN; ++l) {
const Int n = divide(N, l);
large0[l] = n;
}
// \sum_{p<=n} f(p) for n = floor(N/*)
// f: completely multiplicative
// g(p, n) := \sum[1<=x<=n] [x: prime || lpf(x) > p] f(x)
// g(1, n) = \sum[1<=x<=n] f(x) (need to be computed quickly)
// for p: prime:
// g(p, n) = | g(p-1, n) (n < p^2)
// | g(p-1, n) - f(p) (g(p-1, n/p) - g(p-1, p-1)) (n >= p^2)
// O(N^(3/4) / log(N)) time, O(N^(1/2)) space
for (int p = 2; p <= sqrtN; ++p) if (small0[p - 1] < small0[p]) {
const int g0 = small0[p - 1];
const int snp = sqrtN / p;
const int psnp = p * snp;
const long long np = divide(N, p);
const int limL = min<long long>(divide(np, p), sqrtN);
for (int l = 1; l <= snp; ++l) {
const int pl = p * l;
large0[l] -= (large0[pl] - g0);
}
for (int l = snp + 1; l <= limL; ++l) {
const int npl = divide(np, l);
large0[l] -= (small0[npl] - g0);
}
if (snp >= p) {
for (int r = sqrtN - psnp; r >= 0; --r) {
small0[psnp + r] -= (small0[snp] - g0);
}
for (int k = snp; --k >= p; ) for (int r = p; --r >= 0; ) {
small0[p * k + r] -= (small0[k] - g0);
}
}
}
for (int k = 1; k <= sqrtN; ++k) {
small0[k] -= 1;
}
for (int l = 1; l <= sqrtN; ++l) {
large0[l] -= 1;
}
primesLen = small0[sqrtN];
primes.resize(primesLen);
for (int p = 2; p <= sqrtN; ++p) if (small0[p - 1] < small0[p]) {
primes[small0[p - 1]] = p;
}
}
int main() {
for (; ~scanf("%lld", &N); ) {
build();
cerr<<"pi(N) = "<<pi0(N)<<endl;
Mint ans = 1;
for (int k = 1; k <= sqrtN; ++k) {
const Int res = pi0(N / k) - pi0(N / (k + 1));
ans *= Mint(k + 1).pow(res);
}
const Int lim = N / (sqrtN + 1);
for (const int p : primes) {
Int e = 0;
for (Int n = N; n /= p; ) e += n;
// if(N<=10)cerr<<p<<": "<<e<<endl;
if (p > lim) ans /= (N / p + 1);
ans *= (e + 1);
}
printf("%u\n", ans.x);
}
return 0;
}