結果
| 問題 |
No.8123 Calculated N !
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2025-04-01 22:26:26 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,275 bytes |
| コンパイル時間 | 267 ms |
| コンパイル使用メモリ | 82,272 KB |
| 実行使用メモリ | 82,704 KB |
| 最終ジャッジ日時 | 2025-04-01 22:26:31 |
| 合計ジャッジ時間 | 4,932 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 TLE * 1 |
| other | -- * 16 |
ソースコード
mod = 1 << 61 - 1
class Prime():
def __init__(self,N):
self.N = N
self.Is_prime = [1 for i in range(N+1)]
self.Is_prime[0] = self.Is_prime[1] = 0
self.P = []
#self.Fact = [[] for i in range(N+1)] #################
#self.Fact[1] = [(1,1)] ################################
for p in range(2,N + 1):
if self.Is_prime[p] == 0:
continue
self.P.append(p)
#self.Fact[p].append((p,1)) ##########################
for d in range(2,N//p + 1):
self.Is_prime[p*d] = 0
q = 1
r = p
while (p*d) % (p*r) == 0:
q += 1
r *= p
#self.Fact[p*d].append((p,q)) ######################
def is_prime(self,p):
return self.Is_prime[p]
def primelist(self):
return self.P
def fact(self,n): #########のところを外して使う.
return self.Fact[n]
P = Prime(400000)
def sum_of_multiplicative_function(N):
M = 0
while (M + 1) * (M + 1) <= N:
M += 1
Q = [i for i in range(1,M + 1)]
for i in range(M,0,-1):
if Q[-1] == N // i:
continue
Q.append(N // i)
idx = {}
for i in range(len(Q)):
idx[Q[i]] = i
le = len(Q)
Sp = [0 for i in range(le)] # Sp_i:1 ~ Q[i]
mul = [((1,0))]
for a,c in mul:
S = [0 for i in range(le)]
for i in range(1,le):
res = Q[i]
# cによって値が違う.(c乗和)
S[i] = (res - 1) * a % mod
SS = S[:]
for x in range(2,M + 1):
# not prime
if not P.is_prime(x):
continue
for i in range(le - 1, -1, -1):
n = Q[i]
if n < x * x:
for j in range(i, le):
SS[j] = S[j]
break
S[i] = (S[i] - SS[idx[n // x]] + SS[idx[x - 1]]) % mod
for i in range(le):
Sp[i] = (Sp[i] + S[i]) % mod
return Sp[-1]
# N!の約数の個数?
Pr = P.P
M = len(Pr)
mod = 1000000007
inv_2 = (mod + 1) // 2
N = int(input())
n = sum_of_multiplicative_function(N)
x = 1
ans = 1
for d in range(2, N + 1):
m = sum_of_multiplicative_function(N // d)
ans = ans * pow(x + 1, n - m, mod) % mod
x += 1
n = m
if n < M:
break
for i in range(n):
p = Pr[i]
r = 1 + (N // p) + (N // (p * p))
q = p * p
while q * p <= N:
q *= p
r += N // q
ans = ans * r % mod
print(ans)
PNJ