結果
| 問題 |
No.8123 Calculated N !
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2025-04-01 22:46:59 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,347 ms / 2,000 ms |
| コード長 | 12,986 bytes |
| コンパイル時間 | 4,194 ms |
| コンパイル使用メモリ | 295,428 KB |
| 実行使用メモリ | 12,620 KB |
| 最終ジャッジ日時 | 2025-04-01 22:47:19 |
| 合計ジャッジ時間 | 18,655 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 16 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, w) vector<vector<type>> name(h, vector<type>(w))
#define vvv(type, name, h, w, l) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(l)))
#define vvvv(type, name, a, b, c, d) vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(d))))
#define vvvvv(type, name, a, b, c, d, e) vector<vector<vector<vector<vector<type>>>>> name(a, vector<vector<vector<vector<type>>>>(b, vector<vector<vector<type>>>(c, vector<vector<type>>(d, vector<type>(e)))))
#define elif else if
#define FOR1(a) for (long long _ = 0; _ < (long long)(a); _++)
#define FOR2(i, n) for (long long i = 0; i < (long long)(n); i++)
#define FOR3(i, l, r) for (long long i = l; i < (long long)(r); i++)
#define FOR4(i, l, r, c) for (long long i = l; i < (long long)(r); i += c)
#define FOR1_R(a) for (long long _ = (long long)(a) - 1; _ >= 0; _--)
#define FOR2_R(i, n) for (long long i = (long long)(n) - 1; i >= (long long)(0); i--)
#define FOR3_R(i, l, r) for (long long i = (long long)(r) - 1; i >= (long long)(l); i--)
#define FOR4_R(i, l, r, c) for (long long i = (long long)(r) - 1; i >= (long long)(l); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_in(a, A) for (auto a: A)
#define FOR_each(a, A) for (auto &&a: A)
#define FOR_subset(t, s) for(long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
int popcount(int x) { return __builtin_popcount(x); }
int popcount(uint32_t x) { return __builtin_popcount(x); }
int popcount(long long x) { return __builtin_popcountll(x); }
int popcount(uint64_t x) { return __builtin_popcountll(x); }
// __builtin_clz(x)は最上位bitからいくつ0があるか.
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(uint32_t x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(long long x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(uint64_t x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// 入力
void rd() {}
void rd(char &c) { cin >> c; }
void rd(string &s) { cin >> s; }
void rd(int &x) { cin >> x; }
void rd(uint32_t &x) { cin >> x; }
void rd(long long &x) { cin >> x; }
void rd(uint64_t &x) { cin >> x; }
template<class T>
void rd(vector<T> &v) {
for (auto& x:v) rd(x);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define STRING(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
uint32_t __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
uint64_t __VA_ARGS__; \
read(__VA_ARGS__)
#define VC(t, a, n) \
vector<t> a(n); \
read(a)
#define VVC(t, a, h, w) \
vector<vector<t>> a(h, vector<t>(w)); \
read(a)
//出力
void wt() {}
void wt(const char c) { cout << c; }
void wt(const string s) { cout << s; }
void wt(int x) { cout << x; }
void wt(uint32_t x) { cout << x; }
void wt(long long x) { cout << x; }
void wt(uint64_t x) { cout << x; }
template<class T>
void wt(const vector<T> v) {
int n = v.size();
for (int i = 0; i < n; i++) {
if (i) wt(' ');
wt(v[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
/////////////////////////////////////////////////////////////////////////////////////////
u_int64_t random_u64(u_int64_t l, u_int64_t r) {
static std::random_device rd;
static std::mt19937_64 gen(rd());
std::uniform_int_distribution<u_int64_t> dist(l, r);
return dist(gen);
}
long long pow_mod(long long a, long long r, long long mod) {
long long res = 1, p = a % mod;
while (r) {
if ((r % 2) == 1) res = res * p % mod;
p = p * p % mod, r >>= 1;
}
return res;
}
long long mod_inv(long long a, long long mod) {
if (mod == 1) return 0;
a %= mod;
long long b = mod, s = 1, t = 0;
while (1) {
if (a == 1) return s;
t -= (b / a) * s;
b %= a;
if (b == 1) return t + mod;
s -= (a / b) * t;
a %= b;
}
}
long long Garner(vector<long long> Rem, vector<long long> Mod, int MOD) {
assert (Rem.size() == Mod.size());
long long mod = MOD;
Rem.push_back(0);
Mod.push_back(mod);
long long n = Mod.size();
vector<long long> coffs(n, 1);
vector<long long> constants(n, 0);
for (int i = 0; i < n - 1; i++) {
long long v = (Mod[i] + Rem[i] - constants[i]) % Mod[i];
v *= mod_inv(coffs[i], Mod[i]);
v %= Mod[i];
for (int j = i + 1; j < n; j++) {
constants[j] = (constants[j] + coffs[j] * v) % Mod[j];
coffs[j] = (coffs[j] * Mod[i]) % Mod[j];
}
}
return constants[n - 1];
}
long long Tonelli_Shanks(long long a, long long mod) {
a %= mod;
if (a < 2) return a;
if (pow_mod(a, (mod - 1) / 2, mod) != 1) return -1;
if (mod % 4 == 3) return pow_mod(a, (mod + 1) / 4, mod);
long long b = 3;
if (mod != 998244353) {
while (pow_mod(b, (mod - 1) / 2, mod) == 1) {
b = random_u64(2, mod - 1);
}
}
long long q = mod - 1;
long long Q = 0;
while (q % 2 == 0) {
Q++, q /= 2;
}
long long x = pow_mod(a, (q + 1) / 2, mod);
b = pow_mod(b, q, mod);
long long shift = 2;
while ((x * x) % mod != a) {
long long error = (((pow_mod(a, mod - 2, mod) * x) % mod) * x) % mod;
if (pow_mod(error, 1 << (Q - shift), mod) != 1) {
x = (x * b) % mod;
}
b = (b * b) % mod;
shift++;
}
return x;
}
template <int mod>
struct modint {
static constexpr uint32_t umod = uint32_t(mod);
static_assert(umod < (uint32_t(1) << 31));
uint32_t val;
static modint raw(uint32_t v) {
modint x;
x.val = v % umod;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(uint32_t x) : val(x % umod) {}
constexpr modint(uint64_t x) : val(x % umod) {}
constexpr modint(unsigned __int128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= umod) < 0 ? x + umod : x) {};
constexpr modint(long long x) : val((x %= umod) < 0 ? x + umod : x) {};
constexpr modint(__int128 x) : val((x %= umod) < 0 ? x + umod : x) {};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = uint64_t(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
val = uint64_t(val) * p.inverse().val % umod;
return *this;
}
modint operator-() const { return modint::raw(val ? umod - val : uint32_t(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = umod, s = 1, t = 0;
while (1) {
if (a == 1) return modint(s);
t -= (b / a) * s;
b %= a;
if (b == 1) return modint(t + umod);
s -= (a / b) * t;
a %= b;
}
}
modint pow(long long n) const {
assert(n >= 0);
modint res(1), a(val);
while (n > 0) {
if (n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
uint32_t get() const { return val; }
static constexpr int get_mod() { return umod; }
static constexpr pair<int, int> ntt_info() {
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 998244353) return {23, 31};
return {-1, -1};
}
};
template <int mod>
void rd(modint<mod> &x) {
uint32_t y;
cin >> y;
x = y;
}
template <int mod>
void wt(modint<mod> x) {
wt(x.val);
}
// https://nyaannyaan.github.io/library/prime/prime-enumerate.hpp
vector<int> prime_enumerate(int N) {
vector<bool> sieve(N / 3 + 1, 1);
for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
if (!sieve[i]) continue;
for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
qe = sieve.size();
q < qe; q += r = s - r)
sieve[q] = 0;
}
vector<int> ret{2, 3};
for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
if (sieve[i]) ret.push_back(p);
while (!ret.empty() && ret.back() > N) ret.pop_back();
return ret;
}
vector<int> prime;
// https://nyaannyaan.github.io/library/multiplicative-function/prime-counting-o2d3.hpp
inline int64_t my_div(int64_t n, int64_t p) { return double(n) / p; };
int64_t prime_counting(long long N) {
if(N < 2) return 0;
using i64 = long long;
i64 N6, N3, N2, N23, nsz;
vector<i64> ns, h;
vector<int> bit;
// calculate N^{1/2}, N^{1/3}, N{1/6}, N{2/3}
N2 = sqrt(N);
N3 = pow(N, 1.0 / 3.0);
while (N3 * N3 * N3 > N) N3--;
while ((N3 + 1) * (N3 + 1) * (N3 + 1) <= N) N3++;
N6 = sqrt(N3);
N23 = N / N3;
// precalc prime sieve below N ^ {1/2}
// auto prime = prime_enumerate(N2 + 1000);
// index of prime
int pidx = 0;
// restore pi(p - 1)
i64 pi = 0;
// initialize ns
ns.reserve(N2 * 2 + 2);
ns.push_back(0);
for (int i = 1; i <= N2; i++) ns.push_back(my_div(N, i));
for (int i = ns.back() - 1; i > 0; i--) ns.push_back(i);
nsz = ns.size();
// initialize h
copy(begin(ns), end(ns), back_inserter(h));
for (auto &i : h) --i;
// p <= N ^ {1/6}
while (prime[pidx] <= N6) {
int p = prime[pidx];
i64 p2 = i64(p) * p;
for (i64 i = 1, n = ns[i]; i < nsz && n >= p2; n = ns[++i])
h[i] -= h[i * p <= N2 ? i * p : nsz - my_div(n, p)] - pi;
++pidx;
++pi;
}
// fenwick tree, which restore [ h(p, 1), h(p, N ^ {2/3}) )
// bit[i] corresponds to h[i + N3] (1 <= i)
bit.resize(nsz - N3);
auto dfs = [&](auto rec, i64 cur, int pid, int flag) -> void {
if (flag) {
// if cur > N^{1/2} :
// cur <= floor(N / id)
// -> cur * id + n = N, n < id < cur
// -> id <= floor(N / cur)
int id = cur <= N2 ? nsz - cur : my_div(N, cur);
// decrease h[N3] ~ h[id]
if (id > N3)
for (id -= N3; id; id -= id & -id) --bit[id];
}
for (int dst = pid; cur * prime[dst] < N23; dst++)
rec(rec, cur * prime[dst], dst, true);
};
// N ^ {1/6} < p <= N ^ {1/3}
while (prime[pidx] <= N3) {
int p = prime[pidx];
i64 p2 = i64(p) * p;
// update N ^ {2/3} <= n <= N
for (i64 i = 1; i <= N3; i++) {
// ns[i] >= p2 > N^{1/3}
if (p2 > ns[i]) break;
// id of floor(N/ip)
int id = i * p <= N2 ? i * p : nsz - my_div(ns[i], p);
// current value of h[id]
i64 sm = h[id];
// if floor(N/ip) < N^{2/3}, add sum of fenwick tree
if (id > N3)
for (id -= N3; id < (int)bit.size(); id += id & -id) sm += bit[id];
h[i] -= sm - pi;
}
// update N ^ {1/3} <= n < N ^ {2/3}, using dfs
dfs(dfs, p, pidx, false);
++pidx;
++pi;
}
// reflect fenwick tree
for (int i = (int)bit.size() - 1; i; i--) {
int j = i + (i & -i);
if (j < (int)bit.size()) bit[i] += bit[j];
}
for (int i = 1; i < (int)bit.size(); i++) h[i + N3] += bit[i];
// N ^ {1/3} < p <= N ^ {1/2}
while (prime[pidx] <= N2) {
int p = prime[pidx];
i64 p2 = i64(p) * p;
for (i64 i = 1, n = ns[i]; i < nsz && n >= p2; n = ns[++i])
h[i] -= h[i * p <= N2 ? i * p : nsz - my_div(n, p)] - pi;
++pidx;
++pi;
}
return h[1];
}
using mint = modint<1000000007>;
int main() {
LL(N);
prime = prime_enumerate(10000000);
long long n = prime_counting(N);
mint x = mint(1);
mint ans = mint(1);
FOR(d, 2, N + 1) {
long long m = prime_counting(N / d);
x += mint(1);
ans *= x.pow(n - m);
n = m;
if (n < prime.size()) break;
}
FOR(i, n) {
long long p = (long long)prime[i];
long long q = p * p;
mint r = mint(1) + mint(N / p) + mint((N / q));
while (q * p <= N) {
q *= p;
long long n = N / q;
r += mint(N / q);
}
ans *= r;
}
print(ans);
}
PNJ