結果
問題 | No.8120 Aoki's Present for Takahashi |
ユーザー |
|
提出日時 | 2025-04-01 22:56:23 |
言語 | C# (.NET 8.0.404) |
結果 |
AC
|
実行時間 | 465 ms / 2,000 ms |
コード長 | 7,652 bytes |
コンパイル時間 | 9,586 ms |
コンパイル使用メモリ | 173,676 KB |
実行使用メモリ | 243,496 KB |
最終ジャッジ日時 | 2025-04-01 23:17:37 |
合計ジャッジ時間 | 19,337 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 20 |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (111 ミリ秒)。 main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
#nullable enable using System.Numerics; // void init(long long p) { // 動的計画法で前処理 // com.assign(p, vector<long long>(p)); // com[0][0] = 1; // for (int i = 1; i < p; i++) { // com[i][0] = 1; // for (int j = i; j > 0; j--) { // com[i][j] = (com[i - 1][j - 1] + com[i - 1][j]) % p; // } // } // } const int p = 443; void Run() { var (t2, t1) = (Int(), Int()); var nck = new long[p, p]; nck[0, 0] = 1; for (var i = 1; i < p; i++) { nck[i, 0] = 1; for (var j = i; j > 0; j--) { nck[i, j] = nck[i - 1, j - 1] + nck[i - 1, j]; nck[i, j] %= p; } } var ans = new long[t1]; for (var i = 0; i < t1; i++) { var n = Int(); var m = Int(); n = Math.Min(n, m - n); ans[i] = m.C(n); { var pk = 1L; while (m > 0) { pk *= nck[m % p, n % p]; pk %= p; m /= p; n /= p; } var q = Extensions.ChineseRemainderTheorem((ans[i], ModInt.Mod), (pk, p)); ans[i] = q!.Value.r; } } for (var i = 1; i <= t1; i++) Out(i == t2 ? -1 : ans[i - 1]); } #region AtCoderIO _io_; var _backend_ = new StandardIOBackend(); _io_ = new(){ Backend = _backend_ }; Run(); _backend_.Flush(); string String() => _io_.Next(); int Int() => int.Parse(String()); void Out(object? x, string? sep = null) => _io_.Out(x, sep); class AtCoderIO { public required StandardIOBackend Backend { get; init; } Memory<string> _input = Array.Empty<string>(); int _iter = 0; public string Next() { while (_iter >= _input.Length) (_input, _iter) = (Backend.ReadLine().Split(' '), 0); return _input.Span[_iter++]; } public void Out(object? x, string? separator = null) { if (x == null) return; separator ??= Environment.NewLine; if (x is System.Collections.IEnumerable a and not string) { var objects = a.Cast<object>(); if (separator == Environment.NewLine && !objects.Any()) return; x = string.Join(separator, objects); } Backend.WriteLine(x); } } class StandardIOBackend { readonly StreamReader _sr = new(Console.OpenStandardInput()); readonly StreamWriter _sw = new(Console.OpenStandardOutput()) { AutoFlush = false }; public string ReadLine() => _sr.ReadLine()!; public void WriteLine(object? value) => _sw.WriteLine(value); public void Flush() => _sw.Flush(); } #endregion static class Extensions { public static T[] Repeat<T>(this int time, Func<T> F) => Enumerable.Range(0, time).Select(_ => F()).ToArray(); public static (long r, long m)? ChineseRemainderTheorem(params (long r, long m)[] conditions) { static (long d, long x, long y) ExtendedGcd(long a, long b) { if (b == 0) return (a, 1, 0); var (d, x, y) = ExtendedGcd(b, a % b); return (d, y, x - a / b * y); } var (R, M) = (0L, 1L); for (var i = 0; i < conditions.Length; i++) { var (r, m) = conditions[i]; if (m <= 0) return null; r %= m; if (r < 0) r += m; var (d, x, _) = ExtendedGcd(M, m); if ((r - R) % d != 0) return null; var p = m / d; R += M * ((r - R) / d * x % p); M *= p; R %= M; if (R < 0) R += M; } return (R, M); } } readonly record struct ModInt { public const int Mod = 2253371; int V { get; init; } public ModInt(long value) { var v = value % Mod; if (v < 0) v += Mod; V = (int)v; } static ModInt New(int value) => new(){ V = value }; public static implicit operator ModInt(long v) => new(v); public static implicit operator int(ModInt modInt) => modInt.V; public static ModInt AdditiveIdentity => New(0); public static ModInt operator +(ModInt a, ModInt b) { var v = a.V + b.V; if (v >= Mod) v -= Mod; return New(v); } public ModInt AdditiveInverse() { if (V == 0) return AdditiveIdentity; return New(Mod - V); } public static ModInt operator -(ModInt a, ModInt b) { var v = a.V - b.V; if (v < 0) v += Mod; return New(v); } public static ModInt MultiplicativeIdentity => New(1); public static ModInt operator *(ModInt a, ModInt b) => New((int)((long)a.V * b.V % Mod)); public ModInt MultiplicativeInverse() { if (V == 0) throw new DivideByZeroException(); var (d, x, _) = ExtendedGCD(V, Mod); if (d > 1) throw new DivideByZeroException(); return x; } public static ModInt operator /(ModInt a, ModInt b) => a * b.MultiplicativeInverse(); static long Power(long v, ulong p, long mod) { var (res, k) = (1L, v); while (p > 0) { if ((p & 1) > 0) res = res * k % mod; k = k * k % mod; p >>= 1; } return res; } public ModInt Power(long p) => p < 0 ? (MultiplicativeIdentity / V).Power(-p) : Power(V, (ulong)p, Mod); static (long d, long x, long y) ExtendedGCD(long a, long b) { var (x0, y0, x1, y1) = (1L, 0L, 0L, 1L); while (b != 0) { var q = a / b; (a, b) = (b, a - q * b); (x0, y0, x1, y1) = (x1, y1, x0 - q * x1, y0 - q * y1); } return (a, x0, y0); } public override string ToString() => V.ToString(); } static class FactorialExtensions { public static ModInt Factorial(this int value) { Extend(value); return value < 0 ? _inv.Span[-value] : _fac.Span[value]; } public static ModInt P(this int n, int r) { if (r < 0 || r > n) return 0; if (n <= MaxN) return Factorial(n) * Factorial(r - n); ModInt res = 1; for (var i = 0; i < r; i++) res *= n - i; return res; } public static ModInt C(this int n, int r) { if (r < 0 || r > n) return 0; r = Math.Min(r, n - r); return P(n, r) * Factorial(-r); } public static ModInt H(this int n, int r) => C(r + n - 1, r); public static ModInt ModIntInverse(this int n) { if (n == 0) throw new DivideByZeroException(); if (n < 0) return ModIntInverse(-n).AdditiveInverse(); if (n > MaxN) return ((ModInt)n).MultiplicativeInverse(); return Factorial(n - 1) * Factorial(-n); } // [x^k](1-x)^-n = nHk public static ModInt[] NegativeBinomialSeries(long n, int m) { var res = new ModInt[m + 1]; res[0] = 1; for (var i = 1; i <= m; i++) res[i] = res[i - 1] * (n - 1 + i) * ModIntInverse(i); return res; } const int MaxN = (1 << 24) - 1; static Memory<ModInt> _fac = new ModInt[]{ 1 }; static Memory<ModInt> _inv = new ModInt[]{ 1 }; static void Extend(int q) { var l = _fac.Length; if (q < 0) q = -q; if (q < l || MaxN < q) return; while (l <= q) l = 2253370; var fac = new ModInt[l]; var inv = new ModInt[l]; var sf = fac.AsSpan(); sf[0] = 1; for (var i = 1; i < sf.Length; i++) sf[i] = sf[i - 1] * i; var si = inv.AsSpan(); si[l - 1] = sf[l - 1].Power(-1); for (var i = si.Length - 1; i > 0; i--) si[i - 1] = si[i] * i; (_fac, _inv) = (fac, inv); } }