結果
| 問題 |
No.1145 Sums of Powers
|
| ユーザー |
|
| 提出日時 | 2025-04-04 18:01:56 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 235 ms / 2,000 ms |
| コード長 | 9,647 bytes |
| コンパイル時間 | 4,950 ms |
| コンパイル使用メモリ | 326,516 KB |
| 実行使用メモリ | 12,340 KB |
| 最終ジャッジ日時 | 2025-04-04 18:02:05 |
| 合計ジャッジ時間 | 7,089 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
#line 2 "template.hpp"
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
template <class T>
concept Streamable = requires(ostream os, T &x) { os << x; };
template <class mint>
concept is_modint = requires(mint &x) {
{ x.val() } -> std::convertible_to<int>;
};
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...)
#endif
template <Streamable T> void print_one(const T &value) { cout << value; }
template <is_modint T> void print_one(const T &value) { cout << value.val(); }
void print() { cout << '\n'; }
template <class T, class... Ts> void print(const T &a, const Ts &...b) {
print_one(a);
((cout << ' ', print_one(b)), ...);
cout << '\n';
}
template <ranges::range Iterable>
requires(!Streamable<Iterable>)
void print(const Iterable &v) {
for(auto it = v.begin(); it != v.end(); ++it) {
if(it != v.begin())
cout << " ";
print_one(*it);
}
cout << '\n';
}
using ll = long long;
using vl = vector<ll>;
using vll = vector<vl>;
using P = pair<ll, ll>;
#define all(v) v.begin(), v.end()
#define UNIQUE(v) ranges::sort(v), v.erase(unique(all(v)), end(v))
template <typename T> inline bool chmax(T &a, T b) {
return ((a < b) ? (a = b, true) : (false));
}
template <typename T> inline bool chmin(T &a, T b) {
return ((a > b) ? (a = b, true) : (false));
}
// https://trap.jp/post/1224/
template <class... T> constexpr auto min(T... a) {
return min(initializer_list<common_type_t<T...>>{a...});
}
template <class... T> constexpr auto max(T... a) {
return max(initializer_list<common_type_t<T...>>{a...});
}
template <class... T> void input(T &...a) { (cin >> ... >> a); }
template <class T> void input(vector<T> &a) {
for(T &x : a)
cin >> x;
}
#define INT(...) \
int __VA_ARGS__; \
input(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
input(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
input(__VA_ARGS__)
#define REP1(a) for(ll i = 0; i < a; i++)
#define REP2(i, a) for(ll i = 0; i < a; i++)
#define REP3(i, a, b) for(ll i = a; i < b; i++)
#define REP4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define rep1(i, n) for(ll i = 1; i <= ((ll)n); ++i)
ll inf = 3e18;
vl dx = {1, -1, 0, 0};
vl dy = {0, 0, 1, -1};
#line 3 "poly/formal-power-series.hpp"
#include <atcoder/convolution>
// 10^9+7みたいなときconvolutionどうする?
template <class mint> struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FormalPowerSeries(const vector<mint> &v) : vector<mint>(v) {}
FPS &operator+=(const FPS &f) {
if(this->size() < f.size())
this->resize(f.size());
for(int i = 0; i < ssize(f); ++i)
(*this)[i] += f[i];
return *this;
}
FPS &operator-=(const FPS &f) {
if(this->size() < f.size())
this->resize(f.size());
for(int i = 0; i < ssize(f); ++i)
(*this)[i] -= f[i];
return *this;
}
FPS &operator*=(const FPS &f) {
return (*this) = atcoder::convolution(*this, f);
}
FPS &operator*=(const mint &x) {
for(mint &vi : *this)
vi *= x;
return *this;
}
FPS operator+(const FPS &f) const { return FPS(*this) += f; }
FPS operator-(const FPS &f) const { return FPS(*this) -= f; }
FPS operator*(const FPS &f) const { return FPS(*this) *= f; }
FPS operator*(const mint &x) const { return FPS(*this) *= x; }
FPS operator-() const {
FPS res = *this;
for (mint &vi : res) {
vi = -vi;
}
return res;
}
FPS operator>>(const int sz) const {
if(sz >= ssize(*this))
return {};
FPS res(begin(*this) + sz, end(*this));
return res;
}
FPS operator<<(const int sz) const {
FPS res(sz, 0);
res.insert(end(res), begin(*this), end(*this));
return res;
}
FPS inv(int deg = -1) const {
assert(!this->empty() and (*this)[0] != mint(0));
if(deg == -1)
deg = this->size();
FPS res = {(*this)[0].inv()};
FPS f;
f.reserve(this->size());
for(int d = 1; d < deg << 1; d <<= 1) {
while(ssize(f) < min(ssize(*this), d))
f.emplace_back((*this)[f.size()]);
res *= (FPS({2}) - f * res);
while(ssize(res) > min(d, deg))
res.pop_back();
}
return res;
}
// なければ空を返す
// 定数項が1でないときget_sqrtを渡す。解が複数ありうることに注意
FPS sqrt(
int deg = -1,
function<mint(mint)> get_sqrt = [](mint) { return mint(1); }) const {
if(this->empty())
return {};
if(deg == -1)
deg = this->size();
if((*this)[0] == mint(0)) {
for(int i = 1; i < ssize(*this); ++i) {
if((*this)[i] == mint(0))
continue;
if(i & 1)
return {};
if(i / 2 >= deg)
break;
FPS res = (*this >> i).sqrt(deg - i / 2, get_sqrt);
if(res.empty())
return {};
res = res << (i / 2);
return res;
}
return FPS(deg, 0);
}
FPS res{get_sqrt((*this)[0])};
if(res[0] * res[0] != (*this)[0])
return {};
FPS f;
f.reserve(this->size());
mint inv2 = mint(1) / mint(2);
for(int d = 1; d < deg << 1; d <<= 1) {
while(ssize(f) < min(ssize(*this), d))
f.emplace_back((*this)[f.size()]);
res = (res + f * res.inv(d)) * inv2;
while(ssize(res) > min(d, deg))
res.pop_back();
}
return res;
}
FPS diff() const {
FPS res(max<int>(0, ssize(*this) - 1));
for(int i = 1; i < ssize(*this); ++i)
res[i - 1] = (mint)i * (*this)[i];
return res;
}
FPS integral() const {
FPS res(ssize(*this) + 1);
for(int i = 0; i < ssize(*this); ++i)
res[i + 1] = (*this)[i] / mint(i + 1);
return res;
}
FPS log(int deg = -1) const {
assert(!this->empty() and (*this)[0] == (mint)1);
if(deg == -1)
deg = this->size();
if(deg == 0)
return {};
FPS t(begin(*this), begin(*this) + min<int>(deg, ssize(*this)));
FPS res = t.diff() * t.inv(deg - 1);
res.resize(deg - 1);
return res.integral();
}
FPS exp(int deg = -1) {
assert(!this->empty() and (*this)[0] == (mint)0);
if(deg == -1)
deg = this->size();
if(deg == 0)
return {};
FPS res = {1};
FPS f;
f.reserve(this->size());
for(int d = 1; d < deg << 1; d <<= 1) {
while(ssize(f) < min(ssize(*this), d))
f.emplace_back((*this)[f.size()]);
res *= (FPS({1}) + f - res.log(d));
while(ssize(res) > min(d, deg))
res.pop_back();
}
return res;
}
};
#line 4 "/home/y_midori/cp/test/a.cpp"
#include <atcoder/modint>
using mint = atcoder::modint998244353;
using fps = FormalPowerSeries<mint>;
#line 3 "math/factorial.hpp"
// https://suisen-cp.github.io/cp-library-cpp/library/math/factorial.hpp
template <class T> struct factorial {
factorial() {};
void ensure(const int n) {
int sz = size(fac);
if(sz > n) {
return;
}
int new_sz = max(2 * sz, n + 1);
fac.resize(new_sz), fac_inv.resize(new_sz);
for(int i = sz; i < new_sz; i++) {
if(i == 0) {
fac[i] = 1;
continue;
}
fac[i] = fac[i - 1] * i;
}
fac_inv[new_sz - 1] = T(1) / fac[new_sz - 1];
for(int i = new_sz - 2; i >= sz; i--) {
fac_inv[i] = fac_inv[i + 1] * (i + 1);
}
return;
}
T get(int i) {
ensure(i);
return fac[i];
}
T operator[](int i) { return get(i); }
T inv(int i) {
ensure(i);
return fac_inv[i];
}
T binom(int n, int i) {
if(n < 0 || i < 0 || n < i) {
return T(0);
}
ensure(n);
return fac[n] * fac_inv[i] * fac_inv[n - i];
}
T perm(int n, int i) {
if(n < 0 || i < 0 || n < i) {
return T(0);
}
ensure(n);
return fac[n] * fac_inv[n - i];
}
private:
vector<T> fac, fac_inv;
};
#line 8 "/home/y_midori/cp/test/a.cpp"
factorial<mint> fac;
void solve() {
INT(n, m);
vl a(n);
input(a);
queue<fps> que;
rep(i, n) { que.push({1, -a[i]}); }
while(que.size() > 1) {
auto f = que.front();
que.pop();
auto g = que.front();
que.pop();
que.push(f * g);
}
fps f = que.front();
f = -f.log(m + 1);
f = f.diff();
print(f);
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
}