結果
| 問題 |
No.3095 Many Min Problems
|
| コンテスト | |
| ユーザー |
nonon
|
| 提出日時 | 2025-04-06 15:43:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 157 ms / 2,000 ms |
| コード長 | 18,859 bytes |
| コンパイル時間 | 3,261 ms |
| コンパイル使用メモリ | 223,004 KB |
| 実行使用メモリ | 14,788 KB |
| 最終ジャッジ日時 | 2025-04-06 15:44:03 |
| 合計ジャッジ時間 | 6,508 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/modint>
using mint = atcoder::modint998244353;
template<typename T>
T gcd(T a, T b) {
return b == 0 ? a : gcd(a % b, a);
}
namespace combination {
template<typename mint>
struct C {
static vector<mint> fac, finv;
static void init(int n) {
int sz = fac.size();
if (n < sz) return;
n = clamp(n, 2 * sz, min(1 << 25, mint::mod() - 1));
fac.resize(n + 1);
finv.resize(n + 1);
for (int i = sz; i <= n; i++) {
fac[i] = i * fac[i - 1];
}
finv[n] = fac[n].inv();
for (int i = n; i >= sz; i--) {
finv[i - 1] = i * finv[i];
}
}
};
template<typename mint>
vector<mint> C<mint>::fac(1, 1);
template<typename mint>
vector<mint> C<mint>::finv(1, 1);
template<typename mint>
mint fac(int n) {
C<mint>::init(n);
if (n < 0) return 0;
return C<mint>::fac[n];
}
template<typename mint>
mint finv(int n) {
C<mint>::init(n);
if (n < 0) return 0;
return C<mint>::finv[n];
}
template<typename mint>
mint mod_inv(int n) {
assert(n > 0);
return finv<mint>(n) * fac<mint>(n - 1);
}
template<typename mint>
mint nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return 0;
return fac<mint>(n) * finv<mint>(n - k) * finv<mint>(k);
}
template<typename mint>
mint multi_C(const vector<int> &v) {
int n = 0;
for (const int &k : v) n += k;
mint res = fac<mint>(n);
for (const int &k : v) res *= finv<mint>(k);
return res;
}
template<typename mint>
mint nPk(int n, int k) {
if (n < 0 || n < k || k < 0) return 0;
return fac<mint>(n) * finv<mint>(n - k);
}
template<typename mint>
mint catalan(int n) {
return fac<mint>(2 * n) * finv<mint>(n) * finv<mint>(n + 1);
}
template<typename mint>
mint grid_path(int n, int m) {
return nCk<mint>(n + m, n);
}
} // namespace combination
struct montgomery_modint {
using int64 = uint64_t;
using int128 = __uint128_t;
using modint = montgomery_modint;
montgomery_modint() : x(0) {}
montgomery_modint(long long v) : x(reduce((int128(v) + MOD) * R)) {}
static void set_mod(long long _m) {
MOD = _m;
R = -int128(MOD) % MOD;
INV = get_inv_mod();
}
static long long mod() { return MOD; }
long long val() const {
int64 res = reduce(x);
return res >= MOD ? res - MOD : res;
}
modint& operator+=(const modint &r) {
x += r.x;
if (x >= (MOD << 1)) x -= (MOD << 1);
return *this;
}
modint& operator-=(const modint &r) {
x += (MOD << 1) - r.x;
if (x >= (MOD << 1)) x -= (MOD << 1);
return *this;
}
modint& operator*=(const modint &r) {
x = reduce(int128(x) * r.x);
return *this;
}
modint& operator/=(const modint &r) {
*this *= r.inv();
return *this;
}
friend modint operator+(const modint &a, const modint &b) {
return modint(a) += b;
}
friend modint operator-(const modint &a, const modint &b) {
return modint(a) -= b;
}
friend modint operator*(const modint &a, const modint &b) {
return modint(a) *= b;
}
friend modint operator/(const modint &a, const modint &b) {
return modint(a) /= b;
}
friend bool operator==(const modint &a, const modint &b) {
return a.val() == b.val();
}
friend bool operator!=(const modint &a, const modint &b) {
return a.val() != b.val();
}
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint inv() const { return pow(MOD - 2); }
modint pow(int128 k) const {
modint a = *this;
modint res = 1;
while (k > 0) {
if (k & 1) res *= a;
a *= a;
k >>= 1;
}
return res;
}
private:
int64 x;
static int64 MOD, INV, R;
static int64 get_inv_mod() {
int64 res = MOD;
for (int t = 0; t < 5; t++) res *= 2 - MOD * res;
return res;
}
static int64 reduce(const int128 &v) {
return (v + int128(int64(v) * int64(-INV)) * MOD) >> 64;
}
};
typename montgomery_modint::int64
montgomery_modint::MOD, montgomery_modint::INV, montgomery_modint::R;
bool miller_rabin(long long m, const vector<long long> ps) {
using mint = montgomery_modint;
mint::set_mod(m);
long long u = 0, v = m - 1;
while ((v & 1) == 0) u++, v >>= 1;
for (long long p : ps) {
if (m <= p) return true;
mint x = mint(p).pow(v);
if (x != 1) {
long long w;
for (w = 0; w < u; w++) {
if (x == m - 1) break;
x *= x;
}
if (u == w) return false;
}
}
return true;
}
bool miller_rabin_small(long long m) {
return miller_rabin(m, {2, 7, 61});
}
bool miller_rabin_large(long long m) {
return miller_rabin(m, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
bool is_prime(long long m) {
if (m <= 1) return false;
if (m == 2) return true;
if (m % 2 == 0) return false;
return m < 4759123141LL ? miller_rabin_small(m) : miller_rabin_large(m);
}
random_device seed;
mt19937 rng(seed());
mt19937_64 rng_64(seed());
int randint(int low, int hi) {
assert(low <= hi);
uniform_int_distribution<int> dist(low, hi);
return dist(rng);
}
long long randint_64(long long low, long long hi) {
assert(low <= hi);
uniform_int_distribution<long long> dist(low, hi);
return dist(rng_64);
}
double randdouble(double low, double hi) {
uniform_real_distribution<double> dist(low, hi);
return dist(rng);
}
pair<int, int> randpair(int low, int hi, bool strict = false) {
assert(low + strict <= hi);
int L = randint(low, hi - strict);
int R = randint(L + strict, hi);
return make_pair(L, R);
}
pair<long long, long long> randpair_64(long long low, long long hi, bool strict = false) {
assert(low + strict <= hi);
long long L = randint_64(low, hi - strict);
long long R = randint_64(L + strict, hi);
return make_pair(L, R);
}
template<typename T>
T rho(T n) {
for (int p : {2, 3, 5, 7}) {
if (n % p == 0) return p;
}
using mint = montgomery_modint;
mint::set_mod(n);
while (true) {
mint u = randint_64(2, n - 1);
mint v = u;
mint c = randint_64(1, n - 1);
T d = 1;
while (d == 1) {
u = u * u + c;
v = v * v + c;
v = v * v + c;
d = gcd((u - v).val(), n);
}
if (d < n) return d;
}
return -1;
}
template<typename T>
vector<T> prime_factor(T n) {
if (n <= 1) return {};
if (is_prime(n)) return {n};
vector<T> res;
T d = rho(n);
auto a = prime_factor(d);
auto b = prime_factor(n / d);
merge(a.begin(), a.end(), b.begin(), b.end(), back_inserter(res));
res.erase(unique(res.begin(), res.end()), res.end());
return res;
}
long long primitive_root(long long m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
if (m == 1224736769) return 3;
auto ps = prime_factor(m - 1);
using mint = montgomery_modint;
mint::set_mod(m);
mint a = randint_64(1, m - 1);
while ([&]{
for (auto p : ps) {
if (a.pow((m - 1) / p) == 1) return true;
}
return false;
}()) a = randint_64(1, m - 1);
return a.val();
}
template<typename mint>
struct Number_Theoretic_Transform {
static vector<mint> dw, dw_inv;
static int log;
static mint root;
static void ntt(vector<mint> &f) {
init();
int n = f.size();
for (int m = n; m >>= 1;) {
mint w = 1;
for (int s = 0, k = 0; s < n; s += (m << 1)) {
for (int i = s, j = s + m; i < s + m; i++, j++) {
mint a = f[i], b = f[j] * w;
f[i] = a + b;
f[j] = a - b;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
static void intt(vector<mint> &f) {
init();
int n = f.size();
for (int m = 1; m < n; m <<= 1) {
mint w = 1;
for (int s = 0, k = 0; s < n; s += (m << 1)) {
for (int i = s, j = s + m; i < s + m; i++, j++) {
mint a = f[i], b = f[j];
f[i] = a + b;
f[j] = (a - b) * w;
}
w *= dw_inv[__builtin_ctz(++k)];
}
}
mint invn = mint(n).inv();
for (mint &x : f) x *= invn;
}
private:
Number_Theoretic_Transform() = default;
static void init() {
if (log > 0) return;
int mod = mint::mod();
root = primitive_root(mod);
int tmp = mod - 1;
log = 1;
while (tmp % 2 == 0) {
tmp >>= 1;
log++;
}
dw.resize(log);
dw_inv.resize(log);
for (int i = 0; i < log; i++) {
dw[i] = -root.pow((mod - 1) >> (i + 2));
dw_inv[i] = dw[i].inv();
}
}
};
template<typename mint>
vector<mint>Number_Theoretic_Transform<mint>::dw = vector<mint>();
template<typename mint>
vector<mint>Number_Theoretic_Transform<mint>::dw_inv = vector<mint>();
template<typename mint>
int Number_Theoretic_Transform<mint>::log = 0;
template<typename mint>
mint Number_Theoretic_Transform<mint>::root = -1;
template<typename mint>
struct Formal_Power_Series : vector<mint> {
using FPS = Formal_Power_Series;
using vector<mint>::vector;
using NTT = Number_Theoretic_Transform<mint>;
void ntt() { NTT::ntt(*this); }
void intt() { NTT::intt(*this); }
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &r) {
for (mint &x : *this) x *= r;
return *this;
}
FPS &operator/=(const mint &r) {
mint invr = r.inv();
return *this *= invr;
}
FPS &operator+=(const FPS &f) {
int n = this->size(), m = f.size();
if (n < m) this->resize(m);
for (int i = 0; i < m; i++) (*this)[i] += f[i];
return *this;
}
FPS &operator-=(const FPS &f) {
int n = this->size(), m = f.size();
if (n < m) this->resize(m);
for (int i = 0; i < m; i++) (*this)[i] -= f[i];
return *this;
}
FPS &operator*=(const FPS &f) {
*this = convolution(*this, f);
return *this;
}
FPS &operator/=(const FPS &f) {
return *this *= f.inv();
}
FPS &operator%=(const FPS &f) {
*this -= div(f) * f;
this->shrink();
return *this;
}
FPS div(const FPS &f) const {
if (this->size() < f.size()) return FPS{};
int n = this->size() - f.size() + 1;
return (rev().pre(n) * f.rev().inv(n)).pre(n).rev(n);
}
FPS operator+(const mint &r) const { return FPS(*this) += r; }
FPS operator-(const mint &r) const { return FPS(*this) -= r; }
FPS operator*(const mint &r) const { return FPS(*this) *= r; }
FPS operator/(const mint &r) const { return FPS(*this) /= r; }
FPS operator+(const FPS &f) const { return FPS(*this) += f; }
FPS operator-(const FPS &f) const { return FPS(*this) -= f; }
FPS operator*(const FPS &f) const { return FPS(*this) *= f; }
FPS operator/(const FPS &f) const { return FPS(*this) /= f; }
FPS operator%(const FPS &f) const { return FPS(*this) %= f; }
FPS operator-() const {
return FPS{} - *this;
}
FPS operator<<(int n) const {
FPS res(*this);
res.insert(res.begin(), n, mint());
return res;
}
FPS operator>>(int n) const {
if (int(this->size()) <= n) return FPS{};
FPS res(*this);
res.erase(res.begin(), res.begin() + n);
return res;
}
FPS &operator<<=(int n) {
return *this = (*this) << n;
}
FPS &operator>>=(int n) {
return *this = (*this) >> n;
}
FPS pre(int n) const {
n = min(n, int(this->size()));
return FPS(this->begin(), this->begin() + n);
}
FPS rev(int deg = -1) const {
FPS res(*this);
if (deg != -1) res.resize(deg, 0);
reverse(res.begin(), res.end());
return res;
}
FPS dot(const FPS &f) const {
int n = min(this->size(), f.size());
FPS res(n);
for (int i = 0; i < n; i++) res[i] = (*this)[i] * f[i];
return res;
}
void shrink() {
while (this->size() && this->back() == 0) {
this->pop_back();
}
}
mint operator()(const mint &x) const {
mint res = 0, powx = 1;
for (const mint &a : *this) {
res += a * powx;
powx *= x;
}
return res;
}
FPS diff() const {
int n = this->size();
if (n == 0) return FPS{};
FPS res(n - 1);
for (int i = 1; i < n; i++) {
res[i - 1] = i * (*this)[i];
}
return res;
}
FPS integral() const {
int n = this->size();
FPS res(n + 1);
res[0] = 0;
for (int i = 0; i < n; i++) {
res[i + 1] = (*this)[i] * combination::mod_inv<mint>(i + 1);
}
return res;
}
FPS inv(int deg = -1) const {
int n = this->size();
assert(n > 0);
mint c = (*this)[0];
assert(c != 0);
if (deg == -1) deg = n;
FPS res(deg);
res[0] = c.inv();
for (int d = 1; d < deg; d <<= 1) {
FPS f(d << 1), g(d << 1);
for (int i = 0; i < n && i < d << 1; i++) f[i] = (*this)[i];
for (int i = 0; i < d; i++) g[i] = res[i];
f.ntt();
g.ntt();
f = f.dot(g);
f.intt();
for (int i = 0; i < d; i++) f[i] = 0;
f.ntt();
f = f.dot(g);
f.intt();
for (int i = d; i < deg && i < d << 1; i++) res[i] -= f[i];
}
return res;
}
FPS exp(int deg = -1) const {
int n = this->size();
if (deg == -1) deg = n;
if (n == 0) {
FPS res(deg);
res[0] = 1;
return res;
}
assert((*this)[0] == 0);
auto inplace_diff = [](FPS &f) -> void {
if (f.empty()) return;
f.erase(f.begin());
for (int i = 0; i < int(f.size()); i++) f[i] *= i + 1;
};
auto inplace_integral = [&](FPS &f) -> void {
f.insert(f.begin(), 0);
for (int i = 1; i < int(f.size()); i++) f[i] *= combination::mod_inv<mint>(i);
};
FPS b = {1, 1 < n ? (*this)[1] : 0};
FPS c = {1}, z1, z2 = {1, 1};
for (int d = 2; d < deg; d <<= 1) {
FPS y = b;
y.resize(d << 1);
y.ntt();
z1 = z2;
FPS z = y.dot(z1);
z.intt();
fill(z.begin(), z.begin() + (d >> 1), 0);
z.ntt();
z = z.dot(-z1);
z.intt();
c.insert(c.end(), z.begin() + (d >> 1), z.end());
z2 = c;
z2.resize(d << 1);
z2.ntt();
FPS x(this->begin(), this->begin() + min(n, d));
inplace_diff(x);
x.push_back(0);
x.ntt();
x = x.dot(y);
x.intt();
x -= b.diff();
x.resize(d << 1);
for (int i = 0; i < d - 1; i++) x[i + d] = x[i], x[i] = 0;
x.ntt();
x = x.dot(z2);
x.intt();
x.pop_back();
inplace_integral(x);
for (int i = d; i < min(n, d << 1); i++) x[i] += (*this)[i];
fill(x.begin(), x.begin() + d, 0);
x.ntt();
x = x.dot(y);
x.intt();
b.insert(b.end(), x.begin() + d, x.end());
}
return FPS(b.begin(), b.begin() + deg);
}
FPS log(int deg = -1) const {
assert((*this)[0] == 1);
if (deg == -1) deg = this->size();
return (diff() * inv()).integral().pre(deg);
}
FPS pow(long long k, int deg = -1) const {
if (deg == -1) deg = this->size();
if (k == 0) {
FPS res(deg);
res[0] = 1;
return res;
}
FPS res(*this);
int p = 0;
while (p < int(res.size()) && res[p] == 0) p++;
if (p > (deg - 1) / k) return FPS(deg);
res >>= p;
deg -= p * k;
mint c = res[0];
res = ((res / c).log(deg) * k).exp(deg) * c.pow(k);
res <<= p * k;
return res;
}
FPS taylor_shift(mint c) const {
int n = this->size();
FPS f = *this;
for (int i = 0; i < n; i++) f[i] *= combination::fac<mint>(i);
reverse(f.begin(), f.end());
FPS g(n);
mint pw = 1;
for (int i = 0; i < n; i++) {
g[i] = pw * combination::finv<mint>(i);
pw *= c;
}
f = convolution(f, g, n);
reverse(f.begin(), f.end());
for (int i = 0; i < n; i++) f[i] *= combination::finv<mint>(i);
return f;
}
private:
static FPS convolution(FPS f, FPS g, int deg = -1) {
int n = f.size(), m = g.size();
if (n == 0 || m == 0) return FPS{};
int sz = 1;
while (sz < n + m - 1) sz <<= 1;
f.resize(sz);
f.ntt();
g.resize(sz);
g.ntt();
f = f.dot(g);
f.intt();
if (deg == -1) deg = n + m - 1;
f.resize(deg);
return f;
}
};
template<typename mint>
vector<mint> power_sum(int k, long long n) {
using FPS = Formal_Power_Series<mint>;
vector<mint> fac(k + 2), finv(k + 2);
fac[0] = 1;
for (int i = 1; i <= k + 1; i++) {
fac[i] = i * fac[i - 1];
}
finv[k + 1] = fac[k + 1].inv();
for (int i = k + 1; i >= 1; i--) {
finv[i - 1] = i * finv[i];
}
mint pown = n + 1;
FPS f(k + 1), g(k + 1);
for (int i = 0; i <= k; i++) {
f[i] = pown * finv[i + 1];
g[i] = finv[i + 1];
pown *= n + 1;
}
f /= g;
vector<mint> res(k + 1);
res[0] = n + 1;
for (int i = 1; i <= k; i++) {
res[i] = f[i] * fac[i];
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int N, M;
cin >> N >> M;
auto P = power_sum<mint>(N, M);
mint ans = 0;
for (int i = 1; i <= N; i++) {
ans += P[i] * mint(M).pow(N - i);
}
cout << ans.val() << endl;
}
nonon