結果
問題 |
No.3097 Azuki Kurai
|
ユーザー |
![]() |
提出日時 | 2025-04-06 17:21:28 |
言語 | Rust (1.83.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,327 bytes |
コンパイル時間 | 14,885 ms |
コンパイル使用メモリ | 402,488 KB |
実行使用メモリ | 27,576 KB |
最終ジャッジ日時 | 2025-04-06 17:21:54 |
合計ジャッジ時間 | 23,636 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | TLE * 1 -- * 31 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:13:5 | 13 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:16:6 | 16 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:17:6 | 17 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:18:6 | 18 | type Deque<T> = VecDeque<T>; | ^^^^^
ソースコード
// M<=5 とかでもようわからん // i=1の場合は max(0, A_i - K) だけ諦めることになる // 小豆をいくらか捨ててしまう // 取られたら負けという問題は解けるか? // グラフ作ればフローになって、最大流流せるかという問題になる // 終わりじゃない? // フローは早いで終わるのかな // // WA // あれ? // use std::io::Write; use std::collections::*; type Map<K, V> = BTreeMap<K, V>; type Set<T> = BTreeSet<T>; type Deque<T> = VecDeque<T>; fn main() { input! { n: usize, m: usize, k: i64, a: [i64; n], b: [usize1; m], } let mut g = maxflow::Graph::new(2 * n * (m + 1) + m + 1); let pos = |time: usize, v: usize| -> usize { time * 2 * n + v }; let src = 2 * n * (m + 1) + m; for i in 0..n { g.add_edge(src, pos(0, i), a[i]); } let mut goal = (0..m).map(|i| 2 * n * (m + 1) + i).collect::<Vec<_>>(); let inf = a.iter().sum::<i64>(); for (i, b) in b.iter().enumerate() { for j in 0..n { g.add_edge(pos(i, j), pos(i, j) + n, k); for &p in [(j - 1) % n, (j + 1) % n].iter() { if p != *b { g.add_edge(pos(i, j) + n, pos(i + 1, p), inf); } } if j != *b { g.add_edge(pos(i, j), pos(i + 1, j), inf); g.add_edge(pos(i + 1, j), goal[i], inf); } } } goal.insert(0, src); for v in goal.windows(2) { let mut g = g.clone(); let ans = g.flow(src, v[1]); println!("{}", ans); } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin max flow (Dinic) ---------- mod maxflow { pub trait MaxFlowCapacity: Copy + Ord + std::ops::Add<Output = Self> + std::ops::Sub<Output = Self> { fn zero() -> Self; fn inf() -> Self; } macro_rules! impl_primitive_integer_capacity { ($x:ty, $y:expr) => { impl MaxFlowCapacity for $x { fn zero() -> Self { 0 } fn inf() -> Self { $y } } }; } impl_primitive_integer_capacity!(u32, std::u32::MAX); impl_primitive_integer_capacity!(u64, std::u64::MAX); impl_primitive_integer_capacity!(i32, std::i32::MAX); impl_primitive_integer_capacity!(i64, std::i64::MAX); #[derive(Clone)] struct Edge<Cap> { to_: u32, inv_: u32, cap_: Cap, } impl<Cap> Edge<Cap> { fn new(to: usize, inv: usize, cap: Cap) -> Self { Edge { to_: to as u32, inv_: inv as u32, cap_: cap, } } fn to(&self) -> usize { self.to_ as usize } fn inv(&self) -> usize { self.inv_ as usize } } impl<Cap: MaxFlowCapacity> Edge<Cap> { fn add(&mut self, cap: Cap) { self.cap_ = self.cap_ + cap; } fn sub(&mut self, cap: Cap) { self.cap_ = self.cap_ - cap; } fn cap(&self) -> Cap { self.cap_ } } #[derive(Clone)] pub struct Graph<Cap> { graph: Vec<Vec<Edge<Cap>>>, } #[allow(dead_code)] pub struct EdgeIndex { src: usize, dst: usize, x: usize, y: usize, } impl<Cap: MaxFlowCapacity> Graph<Cap> { pub fn new(size: usize) -> Self { Self { graph: vec![vec![]; size], } } pub fn add_edge(&mut self, src: usize, dst: usize, cap: Cap) -> EdgeIndex { assert!(src.max(dst) < self.graph.len()); assert!(cap >= Cap::zero()); assert!(src != dst); let x = self.graph[src].len(); let y = self.graph[dst].len(); self.graph[src].push(Edge::new(dst, y, cap)); self.graph[dst].push(Edge::new(src, x, Cap::zero())); EdgeIndex { src, dst, x, y } } // src, dst, used, intial_capacity #[allow(dead_code)] pub fn get_edge(&self, e: &EdgeIndex) -> (usize, usize, Cap, Cap) { let max = self.graph[e.src][e.x].cap() + self.graph[e.dst][e.y].cap(); let used = self.graph[e.dst][e.y].cap(); (e.src, e.dst, used, max) } pub fn flow(&mut self, src: usize, dst: usize) -> Cap { let size = self.graph.len(); assert!(src.max(dst) < size); assert!(src != dst); let mut queue = std::collections::VecDeque::new(); let mut level = vec![0; size]; let mut it = vec![0; size]; let mut ans = Cap::zero(); loop { (|| { level.clear(); level.resize(size, 0); level[src] = 1; queue.clear(); queue.push_back(src); while let Some(v) = queue.pop_front() { let d = level[v] + 1; for e in self.graph[v].iter() { let u = e.to(); if e.cap() > Cap::zero() && level[u] == 0 { level[u] = d; if u == dst { return; } queue.push_back(u); } } } })(); if level[dst] == 0 { break; } it.clear(); it.resize(size, 0); loop { let f = self.dfs(dst, src, Cap::inf(), &mut it, &level); if f == Cap::zero() { break; } ans = ans + f; } } ans } fn dfs(&mut self, v: usize, src: usize, cap: Cap, it: &mut [usize], level: &[u32]) -> Cap { if v == src { return cap; } while let Some((u, inv)) = self.graph[v].get(it[v]).map(|p| (p.to(), p.inv())) { if level[u] + 1 == level[v] && self.graph[u][inv].cap() > Cap::zero() { let cap = cap.min(self.graph[u][inv].cap()); let c = self.dfs(u, src, cap, it, level); if c > Cap::zero() { self.graph[v][it[v]].add(c); self.graph[u][inv].sub(c); return c; } } it[v] += 1; } Cap::zero() } } } // ---------- end max flow (Dinic) ----------