結果

問題 No.3097 Azuki Kurai
ユーザー Rubikun
提出日時 2025-04-06 17:58:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 14,141 bytes
コンパイル時間 2,340 ms
コンパイル使用メモリ 218,936 KB
実行使用メモリ 27,156 KB
最終ジャッジ日時 2025-04-06 17:58:44
合計ジャッジ時間 13,071 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005;
const ll INF=15LL<<58;

// フローのみ

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_QUEUE_HPP

#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap> struct mf_graph {
public:
    mf_graph() : _n(0) {}
    mf_graph(int n) : _n(n), g(n) {}
    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
        return m;
    }
    struct edge {
        int from, to;
        Cap cap, flow;
    };
    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }
    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;
        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) break;
            }
            return res;
        };
        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            while (flow < flow_limit) {
                Cap f = dfs(dfs, t, flow_limit - flow);
                if (!f) break;
                flow += f;
            }
        }
        return flow;
    }
    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }
private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};
}  // namespace atcoder
#endif  // ATCODER_MAXFLOW_HPP
#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}
    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }
    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };
    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }
    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }
            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = d;
        }
        return result;
    }
private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};
}  // namespace atcoder
#endif  // ATCODER_MINCOSTFLOW_HPP

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    auto rd=[&](ll momo){
        ll x=rng()%momo;
        if(x<0) x+=momo;
        return x;
    };
    
    ll N,M,K;cin>>N>>M>>K;
    vl A(N),B(M);
    ll defsum=0;
    for(int i=0;i<N;i++){
        cin>>A[i];
        //A[i]=rd(mod);
        
        defsum+=A[i];
    }
    for(int i=0;i<M;i++){
        cin>>B[i];B[i]--;
        //B[i]=rd(N);
    }
    
    ll las=0;
    
    {
        int q=M-1;
        int s=(q+1)*2*N,t=s+1;
        atcoder::mcf_graph<ll,ll> G(t+1);
        auto f=[&](int tim,int pos,int f){
            assert(tim*(2*N)+pos+f*N<s);
            return tim*(2*N)+pos+f*N;
        };
        
        for(int i=0;i<N;i++){
            G.add_edge(s,f(0,i,0),A[i],0);
        }
        for(int k=0;k<=q;k++){
            for(int i=0;i<N;i++){
                if(B[k]==i){
                    G.add_edge(f(k,i,0),t,INF,M-k);
                }else{
                    if(k<q) G.add_edge(f(k,i,0),f(k+1,i,0),INF,0);
                    else G.add_edge(f(k,i,0),t,INF,0);
                }
            }
            
            for(int i=0;i<N;i++){
                G.add_edge(f(k,i,0),f(k,i,1),K,0);
                if(k<q){
                    G.add_edge(f(k,i,1),f(k+1,(i+N-1)%N,0),K,0);
                    G.add_edge(f(k,i,1),f(k+1,(i+1)%N,0),K,0);
                }else{
                    G.add_edge(f(k,i,1),t,K,0);
                }
            }
        }
        G.flow(s,t);
        auto gg=G.edges();
        
        vl ans(M);
        
        for(auto e:gg){
            if(e.to==t&&e.cost){
                ans[e.from/(2*N)]=e.flow;
            }
        }
        
        for(int i=1;i<M;i++) ans[i]+=ans[i-1];
        
        for(int i=0;i<M;i++){
            cout<<defsum-ans[i]<<"\n";
        }
    }
    /*
    for(int q=0;q<M;q++){
        int s=(q+1)*2*N,t=s+1;
        atcoder::mf_graph<ll> G(t+1);
        auto f=[&](int tim,int pos,int f){
            return tim*(2*N)+pos+f*N;
        };
        
        for(int i=0;i<N;i++){
            G.add_edge(s,f(0,i,0),A[i]);
        }
        for(int k=0;k<=q;k++){
            for(int i=0;i<N;i++){
                if(B[k]==i) continue;
                
                if(k<q) G.add_edge(f(k,i,0),f(k+1,i,0),INF);
                else G.add_edge(f(k,i,0),t,INF);
            }
            
            for(int i=0;i<N;i++){
                G.add_edge(f(k,i,0),f(k,i,1),K);
                if(k<q){
                    G.add_edge(f(k,i,1),f(k+1,(i+N-1)%N,0),K);
                    G.add_edge(f(k,i,1),f(k+1,(i+1)%N,0),K);
                }else{
                    G.add_edge(f(k,i,1),t,K);
                }
            }
        }
        
        ll res=G.flow(s,t);
        
        if(res==las){
            for(int i=q;i<M;i++){
                cout<<las<<"\n";
            }
            return 0;
        }else{
            cout<<res<<"\n";
        }
        //cout<<G.flow(s,t)<<"\n";
    }
     */
}


0