結果
問題 |
No.1867 Partitions and Inversions
|
ユーザー |
![]() |
提出日時 | 2025-04-09 20:56:07 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,826 bytes |
コンパイル時間 | 464 ms |
コンパイル使用メモリ | 82,416 KB |
実行使用メモリ | 161,604 KB |
最終ジャッジ日時 | 2025-04-09 20:56:15 |
合計ジャッジ時間 | 7,873 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 3 |
other | AC * 2 TLE * 1 -- * 62 |
ソースコード
def main(): import sys input = sys.stdin.read data = input().split() N = int(data[0]) P = list(map(int, data[1:N+1])) # Precompute the original number of inversions (S) class FenwickTree: def __init__(self, size): self.size = size self.tree = [0] * (self.size + 1) def update(self, idx, delta=1): while idx <= self.size: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res max_val = N ft = FenwickTree(max_val) original_inversions = 0 for i in reversed(range(N)): original_inversions += ft.query(P[i] - 1) ft.update(P[i]) S = original_inversions # Precompute inv[j][i] which is inversions in P[j..i] (0-based) inv = [[0] * N for _ in range(N)] for i in range(N): ft = FenwickTree(max_val) current_inversions = 0 for j in range(i, -1, -1): current_inversions += ft.query(P[j] - 1) inv[j][i] = current_inversions ft.update(P[j]) # Convert to 1-based for the DP # dp[k][i]: maximum sum when partition first i elements into k segments dp_prev = [0] * (N + 2) for i in range(N): dp_prev[i+1] = inv[0][i] for k in range(2, N+1): dp_curr = [-1] * (N + 2) for i in range(k, N+1): max_val = 0 for j in range(k-1, i): current = dp_prev[j] + inv[j][i-1] if j < i else 0 if current > max_val: max_val = current dp_curr[i] = max_val dp_prev, dp_curr = dp_curr, dp_prev # Prepare the answers for k in range(1, N+1): if k == 1: print(S - inv[0][N-1]) else: # Compute max for partitioning into k segments max_sum = 0 if k <= N: # Recalculate dp_prev for the given k dp = [[-1] * (N+1) for _ in range(k+1)] for i in range(N): dp[1][i+1] = inv[0][i] for t in range(2, k+1): for i in range(t, N+1): max_val = 0 for j in range(t-1, i): current = dp[t-1][j] + inv[j][i-1] if j < i else 0 if current > max_val: max_val = current dp[t][i] = max_val max_sum = dp[k][N] if k <= N else 0 else: max_sum = 0 res = S - max_sum print(res) if __name__ == '__main__': main()