結果
| 問題 |
No.1867 Partitions and Inversions
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 20:56:07 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,826 bytes |
| コンパイル時間 | 464 ms |
| コンパイル使用メモリ | 82,416 KB |
| 実行使用メモリ | 161,604 KB |
| 最終ジャッジ日時 | 2025-04-09 20:56:15 |
| 合計ジャッジ時間 | 7,873 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 2 TLE * 1 -- * 62 |
ソースコード
def main():
import sys
input = sys.stdin.read
data = input().split()
N = int(data[0])
P = list(map(int, data[1:N+1]))
# Precompute the original number of inversions (S)
class FenwickTree:
def __init__(self, size):
self.size = size
self.tree = [0] * (self.size + 1)
def update(self, idx, delta=1):
while idx <= self.size:
self.tree[idx] += delta
idx += idx & -idx
def query(self, idx):
res = 0
while idx > 0:
res += self.tree[idx]
idx -= idx & -idx
return res
max_val = N
ft = FenwickTree(max_val)
original_inversions = 0
for i in reversed(range(N)):
original_inversions += ft.query(P[i] - 1)
ft.update(P[i])
S = original_inversions
# Precompute inv[j][i] which is inversions in P[j..i] (0-based)
inv = [[0] * N for _ in range(N)]
for i in range(N):
ft = FenwickTree(max_val)
current_inversions = 0
for j in range(i, -1, -1):
current_inversions += ft.query(P[j] - 1)
inv[j][i] = current_inversions
ft.update(P[j])
# Convert to 1-based for the DP
# dp[k][i]: maximum sum when partition first i elements into k segments
dp_prev = [0] * (N + 2)
for i in range(N):
dp_prev[i+1] = inv[0][i]
for k in range(2, N+1):
dp_curr = [-1] * (N + 2)
for i in range(k, N+1):
max_val = 0
for j in range(k-1, i):
current = dp_prev[j] + inv[j][i-1] if j < i else 0
if current > max_val:
max_val = current
dp_curr[i] = max_val
dp_prev, dp_curr = dp_curr, dp_prev
# Prepare the answers
for k in range(1, N+1):
if k == 1:
print(S - inv[0][N-1])
else:
# Compute max for partitioning into k segments
max_sum = 0
if k <= N:
# Recalculate dp_prev for the given k
dp = [[-1] * (N+1) for _ in range(k+1)]
for i in range(N):
dp[1][i+1] = inv[0][i]
for t in range(2, k+1):
for i in range(t, N+1):
max_val = 0
for j in range(t-1, i):
current = dp[t-1][j] + inv[j][i-1] if j < i else 0
if current > max_val:
max_val = current
dp[t][i] = max_val
max_sum = dp[k][N] if k <= N else 0
else:
max_sum = 0
res = S - max_sum
print(res)
if __name__ == '__main__':
main()
lam6er