結果
問題 |
No.1436 Rgaph
|
ユーザー |
![]() |
提出日時 | 2025-04-09 20:57:07 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,193 bytes |
コンパイル時間 | 401 ms |
コンパイル使用メモリ | 82,808 KB |
実行使用メモリ | 72,920 KB |
最終ジャッジ日時 | 2025-04-09 20:58:52 |
合計ジャッジ時間 | 5,488 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 16 WA * 12 |
ソースコード
import sys from collections import deque def main(): sys.setrecursionlimit(1 << 25) N, M = map(int, sys.stdin.readline().split()) edges = [] for _ in range(M): A, B = map(int, sys.stdin.readline().split()) edges.append((A-1, B-1)) # 0-based # Check strong connectivity using Kosaraju's algorithm # Build reversed graph adj = [[] for _ in range(N)] rev_adj = [[] for _ in range(N)] for A, B in edges: adj[A].append(B) rev_adj[B].append(A) visited = [False] * N order = [] def dfs(u): stack = [(u, False)] while stack: node, processed = stack.pop() if processed: order.append(node) continue if visited[node]: continue visited[node] = True stack.append((node, True)) for v in adj[node]: if not visited[v]: stack.append((v, False)) for u in range(N): if not visited[u]: dfs(u) visited = [False] * N label = [0] * N current_label = 0 while order: u = order.pop() if visited[u]: continue stack = [u] visited[u] = True component = [] while stack: node = stack.pop() component.append(node) for v in rev_adj[node]: if not visited[v]: visited[v] = True stack.append(v) for node in component: label[node] = current_label current_label += 1 if current_label != 1: print(-1) return # Check if the graph is bipartite color = [-1] * N is_bipartite = True q = deque() q.append(0) color[0] = 0 while q and is_bipartite: u = q.popleft() for v in adj[u]: if color[v] == -1: color[v] = color[u] ^ 1 q.append(v) elif color[v] == color[u]: is_bipartite = False break if not is_bipartite: # Check if there's an odd-length cycle # In this case, we can construct the answer ans = [] for i in range(M): ans.append('R' if i % 2 == 0 else 'G') print(''.join(ans)) return else: # Bipartite graph # For all edges, check if they cross partitions ans = [] for A, B in edges: if color[A] != color[B]: ans.append('R') else: ans.append('G') # Verify if this works for all u, v # The bipartite graph must have even paths between nodes of the same color # However, since it's strongly connected, bipartition implies that all paths between same color are even-length # So this coloring should work # But need to check if all u to v have a path with even length # However, for bipartition, same color nodes must have even path lengths print(''.join(ans)) return # If none of the above print(-1) if __name__ == "__main__": main()