結果
| 問題 |
No.956 Number of Unbalanced
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 21:00:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,015 bytes |
| コンパイル時間 | 412 ms |
| コンパイル使用メモリ | 81,984 KB |
| 実行使用メモリ | 292,948 KB |
| 最終ジャッジ日時 | 2025-04-09 21:01:05 |
| 合計ジャッジ時間 | 4,292 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | TLE * 1 -- * 23 |
ソースコード
import bisect
from collections import defaultdict
class FenwickTree:
def __init__(self, size):
self.n = size
self.tree = [0] * (self.n + 1)
def update(self, index, delta):
while index <= self.n:
self.tree[index] += delta
index += index & -index
def query(self, index):
res = 0
while index > 0:
res += self.tree[index]
index -= index & -index
return res
def main():
import sys
input = sys.stdin.read().split()
N = int(input[0])
A = list(map(int, input[1:N+1]))
# Create a frequency map of elements to their indices (1-based)
pos_map = defaultdict(list)
for idx, num in enumerate(A):
pos_map[num].append(idx + 1) # Store 1-based index
total = 0
for x in pos_map:
positions = pos_map[x]
# Compute prefix sums of x's occurrences up to each index (1-based)
prefix = [0] * (N + 1)
cnt = 0
for i in range(1, N + 1):
prefix[i] = cnt + (A[i-1] == x)
cnt = prefix[i]
# Calculate the S array
S = [2 * prefix[i] - i for i in range(N + 1)]
# Compress S values to handle large ranges
sorted_S = sorted(S)
unique_S = sorted(set(S))
compressed = {v: i+1 for i, v in enumerate(unique_S)}
# Initialize Fenwick Tree
ft_size = len(unique_S)
ft = FenwickTree(ft_size)
res = 0
for s in S:
# Number of elements < current s is the leftmost position where sorted_S >= s
# Using bisect_left gives the first index >= s, which is the count of elements < s.
idx = bisect.bisect_left(unique_S, s)
res += ft.query(idx)
# Insert the compressed value of s into the Fenwick Tree
c_idx = compressed[s]
ft.update(c_idx, 1)
total += res
print(total)
if __name__ == "__main__":
main()
lam6er