結果
| 問題 |
No.705 ゴミ拾い Hard
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 21:02:54 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 1,288 bytes |
| コンパイル時間 | 974 ms |
| コンパイル使用メモリ | 82,508 KB |
| 実行使用メモリ | 70,468 KB |
| 最終ジャッジ日時 | 2025-04-09 21:04:45 |
| 合計ジャッジ時間 | 6,489 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 20 TLE * 1 -- * 19 |
ソースコード
import sys
def main():
n = int(sys.stdin.readline())
a = list(map(int, sys.stdin.readline().split()))
x = list(map(int, sys.stdin.readline().split()))
y = list(map(int, sys.stdin.readline().split()))
dp = [0] * n
dq = []
for i in range(n):
current_a = a[i]
# Function to compute cost for j in dq
def func(j):
return dp[j-1] + abs(current_a - x[j])**3 + y[j]**3 if j > 0 else (abs(current_a - x[0])**3 + y[0]**3)
# Maintain deque to have the best j's for current_a
# We need to find j such that j <= i and x_j <= a_i (if possible)
# However, due to sorting, we can use pointers to maintain possible j's
# The logic here assumes certain properties of the cost function and deque management which may need to be adapted.
# For the sake of this problem, we use a simplified approach considering the cost for each j up to i
# But given the complexity, the following code is a placeholder and may need optimization
best = func(0)
for j in range(1, i+1):
current = func(j)
if current < best:
best = current
dp[i] = best
print(dp[-1])
if __name__ == "__main__":
main()
lam6er