結果
| 問題 |
No.2807 Have Another Go (Easy)
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 21:03:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,093 bytes |
| コンパイル時間 | 381 ms |
| コンパイル使用メモリ | 82,248 KB |
| 実行使用メモリ | 59,344 KB |
| 最終ジャッジ日時 | 2025-04-09 21:06:03 |
| 合計ジャッジ時間 | 4,943 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 TLE * 1 -- * 44 |
ソースコード
import sys
MOD = 998244353
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx]); idx +=1
M = int(input[idx]); idx +=1
k = int(input[idx]); idx +=1
Cs = list(map(int, input[idx:idx+k]))
# Precompute for T
# We need to compute dp[s], sum from s=0 to 2N-1 dp[s] * count(s)
# count(s) = max(0,7 - (2N -s)) when s >=2N-6 else 0
max_s_prev = 2 * N - 1
dp = [0] * (max_s_prev + 1)
dp[0] = 1 # initial state
for s in range(1, max_s_prev + 1):
for d in range(1, 7):
prev = s - d
if prev >= 0 and prev < 2 * N:
dp[s] = (dp[s] + dp[prev]) % MOD
T = 0
start = max(0, 2 * N - 6)
for s in range(start, 2 * N):
cnt = 7 - (2 * N - s)
if cnt < 0:
cnt = 0
T = (T + dp[s] * cnt) % MOD
# For each query C in Cs:
for C in Cs:
# C_i <N, handle modulo C condition
C_val = C % N
# Dynamic programming for U_i
# States: (k, r) with k in 0,1 (kN + r), and r not equal to C_val
# We need to compute the number of paths where all intermediate steps' r != C_val
# and in the final step, they reach >=2N
# Initialize
dp_no = [[0] * N for _ in range(2)]
if 0 != C_val:
dp_no[0][0] = 1
else:
dp_no[0][0] = 0
U = 0
new_dp_no = [[0]*N for _ in range(2)]
for _ in range(2 * N + 1): # steps up to 2N
new_dp_no = [[0]*N for _ in range(2)]
# Accumulate contributions to U first
for k in range(2):
for r in range(N):
if dp_no[k][r] == 0:
continue
s_prev = k * N + r
# Compute d's that make s_prev +d >=2N
min_d = max(1, 2*N - s_prev)
if min_d >6:
continue # no such d
max_d = 6
cnt_d = max_d - min_d + 1
U = (U + dp_no[k][r] * cnt_d) % MOD
# Update transitions for states not in termination
for k in range(2):
for r in range(N):
if dp_no[k][r] == 0:
continue
s_prev = k * N + r
for d in range(1,7):
new_s = s_prev + d
if new_s >= 2 * N:
continue
new_k = new_s // N
new_r = new_s % N
if new_r == C_val:
continue
new_dp_no[new_k][new_r] = (new_dp_no[new_k][new_r] + dp_no[k][r]) % MOD
# Update dp_no
dp_no, new_dp_no = new_dp_no, dp_no
# Check for convergence or termination after sufficient steps
# Limited to steps up to 2*N
ans = (T - U) % MOD
print(ans)
if __name__ == "__main__":
main()
lam6er