結果
| 問題 |
No.308 素数は通れません
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-09 21:05:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,305 bytes |
| コンパイル時間 | 188 ms |
| コンパイル使用メモリ | 82,128 KB |
| 実行使用メモリ | 78,472 KB |
| 最終ジャッジ日時 | 2025-04-09 21:08:10 |
| 合計ジャッジ時間 | 20,945 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 13 WA * 94 |
ソースコード
import sys
import random
from math import gcd
from collections import Counter
from itertools import product
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n - 1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
if n == 1:
return factors
if is_prime(n):
factors.append(n)
return factors
d = pollards_rho(n)
factors += factor(d)
factors += factor(n // d)
return factors
def divisors(n):
if n == 0:
return []
prime_factors = factor(n)
cnt = Counter(prime_factors)
primes = list(cnt.keys())
exponents = [list(range(cnt[p] + 1)) for p in primes]
divs = []
for exp in product(*exponents):
d = 1
for p, e in zip(primes, exp):
d *= p ** e
divs.append(d)
divs = list(set(divs))
divs.sort()
return divs
def solve():
N_str = sys.stdin.read().strip()
N = int(N_str)
if N == 4:
print(3)
return
candidate1 = []
if N > 1:
n_minus_1 = N - 1
divs = divisors(n_minus_1)
for w in divs:
if w <= 1:
continue
if n_minus_1 % w != 0:
continue
h = n_minus_1 // w
valid = True
for i in range(h + 1):
num = 1 + i * w
if num == 1:
continue
if is_prime(num):
valid = False
break
if valid:
candidate1.append(w)
candidate2 = []
r_limit = min(1000, N)
for r in range(1, r_limit + 1):
W_candidate = N - r
if W_candidate <= 1:
continue
if r >= W_candidate:
continue
start = W_candidate + 1
end = W_candidate + r
if start > end:
continue
if is_prime(start):
continue
all_composite = True
for num in range(start, end + 1):
if is_prime(num):
all_composite = False
break
if all_composite:
candidate2.append(W_candidate)
min_candidate = float('inf')
if candidate1:
min_candidate = min(candidate1)
if candidate2:
min_c2 = min(candidate2)
if min_c2 < min_candidate:
min_candidate = min_c2
print(min_candidate)
if __name__ == "__main__":
solve()
lam6er