結果
問題 |
No.802 だいたい等差数列
|
ユーザー |
![]() |
提出日時 | 2025-04-11 09:45:51 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,541 ms / 2,000 ms |
コード長 | 37,240 bytes |
コンパイル時間 | 6,417 ms |
コンパイル使用メモリ | 337,248 KB |
実行使用メモリ | 70,464 KB |
最終ジャッジ日時 | 2025-04-11 09:46:32 |
合計ジャッジ時間 | 36,228 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 30 |
ソースコード
#include <bits/stdc++.h> using namespace std; namespace { //* #define INCLUDE_MODINT //*/ #include <atcoder/modint> using namespace atcoder; //* #define FAST_IO //*/ #define SINGLE_TESTCASE /* using mint = modint998244353; const bool ntt = true; //*/ //* using mint = modint1000000007; const bool ntt = false; //*/ /* using mint = modint; const bool ntt = false; //*/ namespace mytemplate { using ll = long long; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vector<T>>; template <class T> using vvvc = vector<vector<vector<T>>>; template <class T> using pql = priority_queue<T, vc<T>, greater<T>>; template <class T> using pqg = priority_queue<T>; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; i128 stoi128(string s) { i128 res = 0; if (s.front() == '-') { for (int i = 1; i < (int)s.size(); i++) res = 10 * res + s[i] - '0'; res = -res; } else { for (auto c : s) res = 10 * res + c - '0'; } return res; } string i128tos(i128 x) { string sign = "", res = ""; if (x < 0) x = -x, sign = "-"; while (x > 0) { res += '0' + x % 10; x /= 10; } reverse(res.begin(), res.end()); if (res == "") return "0"; return sign + res; } istream &operator>>(istream &is, i128 &a) { string s; is >> s; a = stoi128(s); return is; } ostream &operator<<(ostream &os, const i128 &a) { os << i128tos(a); return os; } #endif #define cauto const auto #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++) #define rep2(i, l, r) for (ll i = ll(l), rrrrr = ll(r); i < rrrrr; i++) #define rep3(i, l, r, d) for (ll i = ll(l), rrrrr = ll(r), ddddd = ll(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d) #define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++) #define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++) #define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d) #define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__) #define fe(...) for (auto __VA_ARGS__) #define fec(...) for (cauto &__VA_ARGS__) #define fem(...) for (auto &__VA_ARGS__) #define ALL(a) (a).begin(), (a).end() #define SZ(a) (ll)((a).size()) #define SZI(a) (int)((a).size()) const ll INF = 4'000'000'000'000'000'037; template <class T = ll> inline T divfloor(cauto &a, cauto &b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); } template <class T = ll> inline T divround(cauto &a, cauto &b) { return divfloor<T>(2 * a + b, 2 * b); } template <class T1 = ll> T1 mul_limited(auto a, auto b, T1 m = INF) { return b == 0 ? 0 : a > m / b ? m : a * b; } template <class T = ll> struct max_op { T operator()(const T &a, const T &b) const { return max(a, b); } }; template <class T = ll> struct min_op { T operator()(const T &a, const T &b) const { return min(a, b); } }; template <class T, const T val> struct const_fn { T operator()() const { return val; } }; template <class T, size_t d, size_t i = 0> auto dvec(cauto (&sz)[d], const T &init) { if constexpr (i < d) return vc(sz[i], dvec<T, d, i + 1>(sz, init)); else return init; } template <class T> void unique(vector<T> &v) { v.erase(unique(v.begin(), v.end()), v.end()); } template <class T> void rotate(vector<T> &v, int k) { rotate(v.begin(), v.begin() + k, v.end()); } void unique(string &s) { s.erase(unique(s.begin(), s.end()), s.end()); } void rotate(string &s, int k) { rotate(s.begin(), s.begin() + k, s.end()); } #if __cplusplus < 202002L #define LB(v, ...) (ll)(lower_bound(ALL(v), __VA_ARGS__) - begin(v)) #define UB(v, ...) (ll)(upper_bound(ALL(v), __VA_ARGS__) - begin(v)) #define LBI(v, ...) (int)(lower_bound(ALL(v), __VA_ARGS__) - begin(v)) #define UBI(v, ...) (int)(upper_bound(ALL(v), __VA_ARGS__) - begin(v)) #else #define LB(v, ...) (ll)(ranges::lower_bound((v), __VA_ARGS__) - begin(v)) #define UB(v, ...) (ll)(ranges::upper_bound((v), __VA_ARGS__) - begin(v)) #define LBI(v, ...) (int)(ranges::lower_bound((v), __VA_ARGS__) - begin(v)) #define UBI(v, ...) (int)(ranges::upper_bound((v), __VA_ARGS__) - begin(v)) #endif #if __cplusplus < 202002L #endif template <class T> struct bsubsets { private: T x; public: bsubsets(T x) : x(x) {} struct Iterator { private: T y; bool is_end; const bsubsets &bs; public: Iterator(T y, bool is_end, const bsubsets &bs) : y(y), is_end(is_end), bs(bs) {} T operator*() const { return y; } Iterator& operator++() { if (y == 0) is_end = true; y = (y - 1) & bs.x; return *this; } bool operator!=(const Iterator &other) const { return y != other.y || is_end != other.is_end; } }; Iterator begin() const { return Iterator(x, false, *this); } Iterator end() const { return Iterator(x, true, *this); } }; template <class T> struct bsupsets { private: int n; T x; public: bsupsets(int n, T x) : n(n), x(x) {} struct Iterator { private: T y; const bsupsets &bs; public: Iterator(T y, const bsupsets &bs) : y(y), bs(bs) {} T operator*() const { return y; } Iterator& operator++() { y = (y + 1) | bs.x; return *this; } bool operator!=(const Iterator &other) const { return y != other.y; } }; Iterator begin() const { return Iterator(x, *this); } Iterator end() const { return Iterator((T(1) << n) | x, *this); } }; template <class Tuple, size_t... I> Tuple tuple_add(Tuple &a, const Tuple &b, const index_sequence<I...>) { ((get<I>(a) += get<I>(b)), ...); return a; } template <class Tuple> Tuple operator+=(Tuple &a, const Tuple &b) { return tuple_add(a, b, make_index_sequence<tuple_size_v<Tuple>>{}); } template <class Tuple> Tuple operator+(Tuple a, const Tuple &b) { return a += b; } using namespace atcoder; template <class T, internal::is_modint_t<T> * = nullptr> istream &operator>>(istream &is, T &a) { ll v; is >> v; a = v; return is; } template <class T, internal::is_modint_t<T> * = nullptr> ostream &operator<<(ostream &os, const T &a) { os << a.val(); return os; } #define MINT(...) mint __VA_ARGS__; INPUT(__VA_ARGS__) template <class Tuple, enable_if_t<__is_tuple_like<Tuple>::value == true> * = nullptr> istream &operator>>(istream &is, Tuple &t) { apply([&](auto&... a){ (is >> ... >> a); }, t); return is; } template <class... T> void INPUT(T&... a) { (cin >> ... >> a); } template <class T> void INPUTVEC(int n, vector<T> &v) { v.resize(n); rep(i, n) cin >> v[i]; } template <class T, class... Ts> void INPUTVEC(int n, vector<T>& v, vector<Ts>&... vs) { INPUTVEC(n, v); INPUTVEC(n, vs...); } template <class T> void INPUTVEC2(int n, int m, vector<vector<T>> &v) { v.assign(n, vector<T>(m)); rep(i, n) rep(j, m) cin >> v[i][j]; } template <class T, class... Ts> void INPUTVEC2(int n, int m, vector<T>& v, vector<Ts>&... vs) { INPUTVEC2(n, m, v); INPUTVEC2(n, m, vs...); } #define CHAR(...) char __VA_ARGS__; INPUT(__VA_ARGS__) #define INT(...) int __VA_ARGS__; INPUT(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; INPUT(__VA_ARGS__) #define STR(...) string __VA_ARGS__; INPUT(__VA_ARGS__) #define ARR(T, n, ...) array<T, n> __VA_ARGS__; INPUT(__VA_ARGS__) #define VEC(T, n, ...) vector<T> __VA_ARGS__; INPUTVEC(n, __VA_ARGS__) #define VEC2(T, n, m, ...) vector<vector<T>> __VA_ARGS__; INPUTVEC2(n, m, __VA_ARGS__) #define ENDL endl template <class T> void PRINT(const T &a) { cout << a << ENDL; } template <class T, class... Ts> void PRINT(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << ENDL; } #define PRINTEXIT(...) do { PRINT(__VA_ARGS__); exit(0); } while (false) #define PRINTRETURN(...) do { PRINT(__VA_ARGS__); return; } while (false) } using namespace mytemplate; #define dump(...) //* #include <atcoder/modint> #include <atcoder/math> #include <atcoder/convolution> #include <atcoder/internal_math> using namespace atcoder; //*/ template<class T> vector<T> convolution_anymod(const vector<T> &A, const vector<T> &B) { int N = A.size(), M = B.size(); if (min(N, M) <= 250) { vector<T> C(N + M - 1, 0); for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) C[i + j] += A[i] * B[j]; return C; } constexpr ll MOD1 = 167772161, MOD2 = 469762049, MOD3 = 1224736769; using mint2 = static_modint<MOD2>; using mint3 = static_modint<MOD3>; constexpr int i1_2 = internal::inv_gcd(MOD1, MOD2).second; constexpr int i12_3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; T m12 = T(MOD1) * T(MOD2); vector<int> A_(N), B_(M); for (int i = 0; i < N; i++) A_[i] = A[i].val(); for (int i = 0; i < M; i++) B_[i] = B[i].val(); auto C1 = convolution<MOD1>(A_, B_); auto C2 = convolution<MOD2>(A_, B_); auto C3 = convolution<MOD3>(A_, B_); vector<T> C(N + M - 1); for (ll i = 0; i < N + M - 1; i++) { int c1 = C1[i], c2 = C2[i], c3 = C3[i]; int t1 = (mint2(c2 - c1) * mint2::raw(i1_2)).val(); int t2 = ((mint3(c3 - c1) - mint3::raw(t1) * mint3::raw(MOD1)) * mint3::raw(i12_3)).val(); C[i] = T(c1) + T(t1) * T(MOD1) + T(t2) * m12; } return C; } template<class T1> struct LagrangeInterpolation { int D; vector<T1> Y, fac, finv, prodl, prodr; template<class T2> LagrangeInterpolation(const vector<T2> &y) { D = (int)y.size() - 1; Y.resize(D + 1); for (int i = 0; i <= D; i++) { Y[i] = y[i]; } fac.resize(D + 1), finv.resize(D + 1); fac[0] = 1; for (int i = 1; i <= D; i++) fac[i] = fac[i - 1] * i; finv[D] = fac[D].inv(); for (int i = D - 1; i >= 0; i--) finv[i] = finv[i + 1] * (i + 1); prodl.resize(D + 2), prodr.resize(D + 2); } }; template<class T, bool is_ntt_friendly> struct FormalPowerSeries : vector<T> { private: static vector<T> fac, finv, invmint; void calc(int n) { while ((int)fac.size() <= n) { int i = fac.size(); fac.emplace_back(fac[i - 1] * i); invmint.emplace_back(-invmint[T::mod() % i] * (T::mod() / i)); finv.emplace_back(finv[i - 1] * invmint[i]); } } public: T get_fac(int n) { calc(n); return fac[n]; } T get_finv(int n) { calc(n); return finv[n]; } using vector<T>::vector; using vector<T>::operator=; using F = FormalPowerSeries; using S = vector<pair<ll, T>>; FormalPowerSeries(const S &f, int n = -1) { if (n == -1) n = f.back().first + 1; (*this).assign(n, T(0)); for (auto [d, a] : f) (*this)[d] += a; } F operator-() const { F res(*this); for (auto &a : res) a = -a; return res; } F &operator*=(const T &k) { for (auto &a : *this) a *= k; return *this; } F operator*(const T &k) const { return F(*this) *= k; } friend F operator*(const T k, const F &f) { return f * k; } F &operator/=(const T &k) { *this *= k.inv(); return *this; } F operator/(const T &k) const { return F(*this) /= k; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] += g[i]; return *this; } F operator+(const F &g) const { return F(*this) += g; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] -= g[i]; return *this; } F operator-(const F &g) const { return F(*this) -= g; } F &operator<<=(const ll d) { int n = (*this).size(); (*this).insert((*this).begin(), min(ll(n), d), T(0)); (*this).resize(n); return *this; } F operator<<(const ll d) const { return F(*this) <<= d; } F &operator>>=(const ll d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(ll(n), d)); (*this).resize(n, T(0)); return *this; } F operator>>(const ll d) const { return F(*this) >>= d; } F &operator*=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); if (d != 0) c = 0; for (int i = n - 1; i >= 0; i--) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F operator*(const S &g) const { return F(*this) *= g; } F &operator/=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T inv_c = c.inv(); for (int i = 0; i < n; i++) { for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= inv_c; } return *this; } F operator/(const S &g) const { return F(*this) /= g; } template<const int MOD> F convolution2(const vector<static_modint<MOD>> &A, const vector<static_modint<MOD>> &B, const int d = -1) const { F res; if (is_ntt_friendly) res = convolution(A, B); else res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } template<const int id> F convolution2(const vector<dynamic_modint<id>> &A, const vector<dynamic_modint<id>> &B, const int d = -1) const { F res; res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } F &operator*=(const F &g) { int n = (*this).size(); if (n == 0) return *this; *this = convolution2(*this, g, n); return *this; } F operator*(const F &g) const { return F(*this) *= g; } template <const int MOD> void butterfly2(FormalPowerSeries<static_modint<MOD>, true> &A) const { internal::butterfly(A); } template <const int MOD> void butterfly2(FormalPowerSeries<static_modint<MOD>, false> &A) const { assert(false); } template <const int id> void butterfly2(FormalPowerSeries<dynamic_modint<id>, false> &A) const { assert(false); } template <const int MOD> void butterfly_inv2(FormalPowerSeries<static_modint<MOD>, true> &A) const { internal::butterfly_inv(A); } template <const int MOD> void butterfly_inv2(FormalPowerSeries<static_modint<MOD>, false> &A) const { assert(false); } template <const int id> void butterfly_inv2(FormalPowerSeries<dynamic_modint<id>, false> &A) const { assert(false); } F circular_mod(int n) const { F res(n, T(0)); for (int i = 0; i < (int)(*this).size(); i++) res[i % n] += (*this)[i]; return res; } F inv(int d = -1) const { int n = (*this).size(); assert(!(*this).empty() && (*this).at(0) != T(0)); if (d == -1) d = n; F f, g2; F g{(*this).front().inv()}; while ((int)g.size() < d) { if (is_ntt_friendly) { int m = g.size(); f = F{(*this).begin(), (*this).begin() + min(n, 2 * m)}; g2 = F(g); f.resize(2 * m, T(0)), butterfly2(f); g2.resize(2 * m, T(0)), butterfly2(g2); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m, T(0)), butterfly2(f); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); T iz = T(2 * m).inv(); iz *= -iz; for (int i = 0; i < m; i++) f[i] *= iz; g.insert(g.end(), f.begin(), f.begin() + m); } else { g.resize(2 * g.size(), T(0)); g *= F{T(2)} - g * (*this); } } return {g.begin(), g.begin() + d}; } F &operator/=(const F &g) { *this *= g.inv((*this).size()); return *this; } F operator/(const F &g) const { return F(*this) *= g.inv((*this).size()); } F differentiate() { *this >>= 1; for (int i = 0; i < int((*this).size()) - 1; i++) (*this)[i] *= i + 1; return *this; } F differential() const { return F(*this).differentiate(); } F integrate() { int n = (*this).size(); vector<T> minv(n); minv[1] = T(1); *this <<= 1; for (int i = 2; i < n; i++) { minv[i] = -minv[T::mod() % i] * (T::mod() / i); (*this)[i] *= minv[i]; } return *this; } F integral() const { return F(*this).integrate(); } F log() const { assert((*this).front() == T(1)); return ((*this).differential() / (*this)).integral(); } F exp() const // https://arxiv.org/pdf/1301.5804.pdf { int n = (*this).size(); assert(n != 0 && (*this).front() == T(0)); //* if (is_ntt_friendly) { F f{T(1)}, g{T(1)}; F dh = (*this).differential(); F f2, g2, f3, q, s, h, u; g2 = {T(0)}; while ((int)f.size() < n) { int m = f.size(); T im = T(m).inv(), i2m = T(2 * m).inv(); f2 = F(f); f2.resize(2 * m), butterfly2(f2); F f3(f); butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); f3.erase(f3.begin(), f3.begin() + m / 2); f3.resize(m, T(0)), butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); for (int i = 0; i < m / 2; i++) f3[i] *= -im * im; g.insert(g.end(), f3.begin(), f3.begin() + m / 2); g2 = F(g), g2.resize(2 * m), butterfly2(g2); q = F(dh); q.resize(2 * m); for (int i = m - 1; i < 2 * m; i++) q[i] = T(0); butterfly2(q); for (int i = 0; i < 2 * m; i++) q[i] *= f2[i]; butterfly_inv2(q); q = q.circular_mod(m); for (int i = 0; i < m; i++) q[i] *= i2m; q.resize(m + 1); s = ((f.differential() - q) << 1).circular_mod(m); s.resize(2 * m); butterfly2(s); for (int i = 0; i < 2 * m; i++) s[i] *= g2[i]; butterfly_inv2(s); for (int i = 0; i < m; i++) s[i] *= i2m; s.resize(m); h = (*this); h.resize(2 * m), s.resize(2 * m); u = (h - (s << (m - 1)).integral()) >> m; butterfly2(u); for (int i = 0; i < 2 * m; i++) u[i] *= f2[i]; butterfly_inv2(u); for (int i = 0; i < m; i++) u[i] *= i2m; u.resize(m); f.insert(f.end(), u.begin(), u.end()); } return {f.begin(), f.begin() + n}; } else //*/ { F f{T(1)}, g{T(1)}; while ((int)f.size() < n) { int m = f.size(); g = convolution2(g, F{T(2)} - f * g, m); F q = (*this).differential(); q.resize(m - 1); F r = f.convolution2(f, q).circular_mod(m); r.resize(m + 1); F s = ((f.differential() - r) << 1).circular_mod(m); F t = g * s; F h = (*this); h.resize(2 * m), t.resize(2 * m); F u = (h - (t << (m - 1)).integral()) >> m; F v = f * u; f.insert(f.end(), v.begin(), v.end()); } return {f.begin(), f.begin() + n}; /* F f{T(1)}; while ((int)f.size() < n) { int m = f.size(); f.resize(min(n, 2 * m), T(0)); f *= (*this) + F{T(1)} - f.log(); } return f; //*/ } } F pow(const ll k) const { if (k == 0) { F res((*this).size(), T(0)); res[0] = T(1); return res; } int n = (*this).size(), d; for (d = 0; d < n; d++) { if ((*this)[d] != T(0)) break; } if (d == n) return F(n, 0); F res = F(*this) >> d; T c = res[0]; res /= c; res = (res.log() * T(k)).exp(); res *= c.pow(k), res <<= (d != 0 && k > n ? n : d * k); return res; } F div_poly(const F &g) const { F f2 = F(*this), g2 = F(g); while (!f2.empty() && f2.back() == T(0)) f2.pop_back(); while (!g2.empty() && g2.back() == T(0)) g2.pop_back(); int n = f2.size(), m = g2.size(); int k = n - m + 1; if (k <= 0) return F{}; reverse(f2.begin(), f2.end()); reverse(g2.begin(), g2.end()); f2.resize(k, T(0)), g2.resize(k, T(0)); F q = f2 / g2; reverse(q.begin(), q.end()); while (!q.empty() && q.back() == T(0)) q.pop_back(); return q; } pair<F, F> divmod(const F &g) const { int m = g.size(); assert(m != 0); F q = (*this).div_poly(g); F f3 = F(*this), g3 = F(g), q3 = F(q); f3.resize(m - 1, T(0)), g3.resize(m - 1, T(0)), q3.resize(m - 1, T(0)); F r = f3 - q3 * g3; while (!r.empty() && r.back() == T(0)) r.pop_back(); return make_pair(q, r); } F operator%(const F &g) const { return (*this).divmod(g).second; } F &operator%=(const F &g) { return (*this) = (*this) % g; } F div_poly(const S &g) const { F f2 = F(*this); while (!f2.empty() && f2.back() == T(0)) f2.pop_back(); assert(!g.empty()); int n = f2.size(), m = g.back().first + 1; int k = n - m + 1; if (k <= 0) return F{}; reverse(f2.begin(), f2.end()); S g2(g.size()); for (int i = 0; i < (int)g.size(); i++) g2[(int)g.size() - 1 - i] = make_pair(m - 1 - g[i].first, g[i].second); f2.resize(k, T(0)); F q = f2 / g2; reverse(q.begin(), q.end()); while (!q.empty() && q.back() == T(0)) q.pop_back(); return q; } pair<F, F> divmod(const S &g) const { assert(!g.empty()); int m = g.back().first + 1; F q = (*this).div_poly(g); F f3 = F(*this), q3 = F(q); f3.resize(m - 1, T(0)), q3.resize(m - 1, T(0)); F r = f3 - q3 * g; while (!r.empty() && r.back() == T(0)) r.pop_back(); return make_pair(q, r); } F operator%(const S &g) const { return (*this).divmod(g).second; } F &operator%=(const S &g) { return (*this) = (*this) % g; } F to_egf() { for (int i = 0; i < (int)(*this).size(); i++) (*this)[i] *= get_finv(i); return (*this); } F to_ogf() { for (int i = 0; i < (int)(*this).size(); i++) (*this)[i] *= get_fac(i); return (*this); } F get_ogf() const { return F(*this).to_ogf(); } F taylor_shift(const T &c) const { int n = (*this).size(); F f = F(*this).get_ogf(); reverse(f.begin(), f.end()); F g = F(n); g[0] = 1; for (int i = 1; i < n; i++) g[i] = c * g[i - 1]; g.to_egf(); F h = f * g; reverse(h.begin(), h.end()); return h.to_egf(); } }; template <class T, bool is_ntt_friendly> struct SparseFormalPowerSeries : vector<pair<ll, T>> { using vector<pair<ll, T>>::vector; using vector<pair<ll, T>>::operator=; using F = FormalPowerSeries<T, is_ntt_friendly>; using S = SparseFormalPowerSeries; F to_fps(int n) const { F res(n, T(0)); for (auto [d, a] : (*this)) res[d] += a; return res; } SparseFormalPowerSeries(const F &f) { (*this).clear(); for (int i = 0; i < (int)f.size(); i++) { if (f[i] != T(0)) (*this).emplace_back(make_pair(i, f[i])); } } S operator-() const { S res(*this); for (auto &[d, a] : res) a = -a; return res; } S operator*=(const T &k) { for (auto &[d, a] : (*this)) a *= k; return (*this); } S operator/=(const T &k) { (*this) *= k.inv(); return (*this); } S operator*(const T &k) const { return S(*this) *= k; } S operator/(const T &k) const { return S(*this) /= k; } friend S operator*(const T k, const S &f) { return f * k; } S operator+(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair<ll, T> tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else tmp = g[j++]; if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator-(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair<ll, T> tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else { tmp = g[j++]; tmp.second = -tmp.second; } if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator*(const S &g) const { S res; for (auto [d, a] : (*this)) for (auto [e, b] : g) res.emplace_back(make_pair(d + e, a * b)); sort(res.begin(), res.end(), [&](pair<ll, T> p1, pair<ll, T> p2) { return p1.first < p2.first; }); S res2; for (auto da : res) { auto [d, a] = da; if (res2.empty() || res2.back().first != d) res2.emplace_back(da); else res2.back().second += a; } return res2; } S operator+=(const S &g) { return (*this) = (*this) + g; } S operator-=(const S &g) { return (*this) = (*this) - g; } S operator*=(const S &g) { return (*this) = (*this) * g; } S operator<<=(ll k) { for (auto &[d, a] : (*this)) d += k; return (*this); } S operator<<(ll k) const { return (*this) <<= k; } S operator>>(ll k) const { S res; for (auto [d, a] : (*this)) { d -= k; if (d >= 0) res.emplace_back(make_pair(d, a)); } return res; } S operator>>=(ll k) { return (*this) = (*this) >> k; } F inv(int n) const { F f(n, T(0)); f.front() = T(1); return f / (*this); } S differentiate() { for (auto &[d, a] : (*this)) a *= d--; if (!(*this).empty() && (*this).front().first == -1) (*this).erase((*this).begin()); return (*this); } S differential() const { return S(*this).differentiate(); } S integrate() { for (auto &[d, a] : (*this)) a /= T(++d); return (*this); } S integral() const { return S(*this).integrate(); } F log(int n) const { F f = (*this).to_fps(n); return (f.differential() / (*this)).integral(); } F diffeq(const S &a, const S &b, int n) const { assert(a.front().first == 0 && a.front().second == 1); vector<T> minv(n); minv[1] = T(1); for (int i = 2; i < n; i++) minv[i] = -minv[T::mod() % i] * (T::mod() / i); F f(n, T(0)); f[0] = T(1); for (int k = 0; k < n - 1; k++) { for (auto [i, ai] : a) { if (0 <= k - i + 1 && k - i + 1 < k + 1) f[k + 1] -= ai * (k - i + 1) * f[k - i + 1]; } for (auto [j, bj] : b) { if (0 <= k - j && k - j < k + 1) f[k + 1] -= bj * f[k - j]; } f[k + 1] *= minv[k + 1]; } return f; } F exp(int n) const { return diffeq(S{{0, 1}}, -((*this).differential()), n); } F pow(ll m, int n) const { S f(*this); if (f.empty()) { F res(n, T(0)); if (m == 0) res.front() = T(1); return res; } auto [d0, a0] = f.front(); T a0_inv = a0.inv(); for (auto &[d, a] : f) d -= d0, a *= a0_inv; if (m >= 0) { F g = diffeq(f, -m * f.differential(), n); return (g * a0.pow(m)) << mul_limited(d0, m); } else { F g = diffeq(f, -m * f.differential(), n + (d0 * (-m))); F h = (g * a0_inv.pow(-m)) >> (d0 * (-m)); h.resize(n); return h; } } }; template <class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::fac{1, 1}; template <class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::finv{1, 1}; template<class T, bool is_ntt_friendly> vector<T> FormalPowerSeries<T, is_ntt_friendly>::invmint{0, 1}; template<class T, bool is_ntt_friendly> struct RationalFormalPowerSeries { using F = FormalPowerSeries<T, is_ntt_friendly>; using R = RationalFormalPowerSeries; F num, den; R operator-() const { R res(*this); res.num = -res.num; return res; } R operator*=(const T &k) { (*this).num *= k; return *this; } R operator*(const T &k) const { return R(*this) *= k; } friend R operator*(const T k, const R &r) { return r * k; } R operator/=(const T &k) { (*this).den *= k; return k; } R operator/(const T &k) const { return R(*this) /= k; } R &operator+=(const R &r) { F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f + g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator+(const R &r) const { return R(*this) += r; } R &operator-=(const R &r) { F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f - g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator-(const R &r) const { return R(*this) -= r; } R operator*=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.num); (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator*(const R &r) const { return R(*this) *= r; } R operator/=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.den); (*this).den = (*this).den.convolution2((*this).den, r.num); return *this; } R operator/(const R &r) const { return R(*this) /= r; } R inv() { R res(*this); swap(res.num, res.den); return res; } }; template<class T, bool is_ntt_friendly> vector<T> sample_points_shift(const vector<T> &ys, int M, T c) { using F = FormalPowerSeries<T, is_ntt_friendly>; F f; int N = ys.size(); vector<T> a; { vector<T> p(N), q(N); for (int i = 0; i < N; i++) { p[i] = ys[i] * f.get_finv(i); q[i] = i % 2 == 0 ? f.get_finv(i) : -f.get_finv(i); } a = f.convolution2(p, q); a.resize(N); } vector<T> b; { vector<T> p(N), q(N); T tmp = 1; for (int i = 0; i < N; i++) { p[i] = a[i] * f.get_fac(i); q[i] = tmp * f.get_finv(i); tmp *= c - i; } reverse(q.begin(), q.end()); b = f.convolution2(p, q); b.erase(b.begin(), b.begin() + N - 1); for (int i = 0; i < N; i++) b[i] *= f.get_finv(i); } vector<T> res; { vector<T> p(M); for (int i = 0; i < M; i++) p[i] = f.get_finv(i); res = f.convolution2(b, p); res.resize(M); for (int i = 0; i < M; i++) res[i] *= f.get_fac(i); } return res; } template<class T, bool is_ntt_friendly> struct FactorialFast { private: const int P, K; vector<T> Y, Z, fac; public: FactorialFast(const int K = 9) : P(T::mod()), K(K) { Y = {1}; for (int i = 0; i < K; i++) { Z = sample_points_shift<T, is_ntt_friendly>(Y, (1 << (i + 2)) - (1 << i), 1 << i); Z.insert(Z.begin(), Y.begin(), Y.end()); Y.resize(1 << (i + 1)); for (int j = 0; j < (1 << (i + 1)); j++) Y[j] = Z[2 * j] * Z[2 * j + 1] * T::raw((1 << i) * (2 * j + 1)); } if ((1 << K) <= P / (1 << K)) { Z = sample_points_shift<T, is_ntt_friendly>(Y, P / (1 << K), 1 << K); Y.insert(Y.end(), Z.begin(), Z.end()); } fac.resize(P / (1 << K) + 1); fac.at(0) = 1; for (int i = 0; i < P / (1 << K); i++) fac[i + 1] = fac[i] * Y[i] * T::raw((1 + i) * (1 << K)); } }; template<class T, bool is_ntt_friendly> FormalPowerSeries<T, is_ntt_friendly> stirling1_fixed_n(const int &N) { using F = FormalPowerSeries<T, is_ntt_friendly>; using S = SparseFormalPowerSeries<T, is_ntt_friendly>; if (N == 0) return {1}; if (N == 1) return {0, 1}; if (N & 1) { F f = stirling1_fixed_n<T, is_ntt_friendly>(N - 1); f.resize(N + 1, T(0)); return f * S{{0, 1 - N}, {1, 1}}; } else { F f = stirling1_fixed_n<T, is_ntt_friendly>(N / 2); f.resize(N + 1, T(0)); F g = f.taylor_shift(-(N / 2)); return f * g; } } using fps = FormalPowerSeries<mint, ntt>; using sfps = SparseFormalPowerSeries<mint, ntt>; //* #include <atcoder/all> //*/ namespace fast_prime { bool is_prime(ll n) { if (n <= 1) return false; static const ll as[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; static const ll ps[9] = {2, 3, 5, 13, 19, 73, 193, 407521, 299210837}; for (auto &&p : ps) { if (n == p) return true; if (n % p == 0) return false; } ll d = n - 1; int s = 0; while (d % 2 == 0) d /= 2, s++; for (auto &&a : as) { ll a0 = 1; for (ll d2 = d, tmp = a; d2 > 0; d2 /= 2, tmp = __int128_t(tmp) * tmp % n) { if (d2 % 2 != 0) a0 = __int128_t(a0) * tmp % n; } if (a0 == 1 || a0 == n - 1) continue; for (int r = 1; r <= s; r++) { if (r == s) return false; a0 = __int128_t(a0) * a0 % n; if (a0 == n - 1) break; } } return true; } ll get_prime_factor(ll n) { int m = pow(n, .125); for (int c = 1; ; c++) { auto f = [&](ll a) -> ll { return (__int128_t(a) * a + c) % n; }; ll x = 2, y = 2, prod = 1, g = 1; for (int t = 1; g == 1; t = min(2 * t, m)) { for (int i = 0; i < t; i++) { x = f(x), y = f(f(y)); prod = __int128_t(prod) * (x - y) % n; } g = gcd(prod, n); } if (g == n) continue; return is_prime(g) ? g : is_prime(n / g) ? n / g : get_prime_factor(g); } } vector<ll> factorize(ll n) { vector<ll> res; for (int p = 2; p < 100; p++) { while (n % p == 0) { n /= p; res.emplace_back(p); } } while (n > 1) { if (is_prime(n)) { res.emplace_back(n); break; } ll p = get_prime_factor(n); n /= p; res.emplace_back(p); } sort(res.begin(), res.end()); return res; } vector<tuple<ll, int, ll>> ord_pow(const vector<ll> &ps) { vector<tuple<ll, int, ll>> res; for (auto &&p : ps) { if (res.empty() || get<0>(res.back()) != p) res.emplace_back(make_tuple(p, 1, p)); else get<1>(res.back())++, get<2>(res.back()) *= p; } return res; } vector<ll> divisors(const vector<tuple<ll, int, ll>> &peqs) { vector<ll> ds; auto dfs = [&](auto self, ll d, int i) -> void { if (i == (int)peqs.size()) { ds.emplace_back(d); return; } auto &&[p, e, q] = peqs[i]; for (ll r = 1, j = 0; j <= e; r *= p, j++) self(self, d * r, i + 1); }; dfs(dfs, 1, 0); sort(ds.begin(), ds.end()); return ds; } vector<ll> divisors(const vector<ll> &ps) { return divisors(ord_pow(ps)); } vector<ll> divisors(ll n) { return divisors(factorize(n)); } } using namespace fast_prime; template <class T> struct Binomial { private: static vector<T> _fac, _finv, _inv; public: static void calc(int n) { int i = _fac.size(); if (n < i) return; _fac.resize(n + 1), _finv.resize(n + 1), _inv.resize(n + 1); for (; i <= n; i++) { _fac[i] = _fac[i - 1] * i; _inv[i] = -_inv[T::mod() % i] * (T::mod() / i); _finv[i] = _finv[i - 1] * _inv[i]; } } static T inv(int n) { assert(n > 0); calc(n); return _inv[n]; } }; template <class T> vector<T> Binomial<T>::_fac{1, 1}; template <class T> vector<T> Binomial<T>::_finv{1, 1}; template <class T> vector<T> Binomial<T>::_inv{0, 1}; template <class T = ll, class U = i128> pair<T, T> svp2(const pair<T, T> &a, const pair<T, T> &b) { assert(a != make_pair(0, 0) && b != make_pair(0, 0)); auto [a1, a2] = a; auto [b1, b2] = b; if ((U)a1 * a1 + (U)a2 * a2 < (U)b1 * b1 + (U)b2 * b2) swap(a1, b1), swap(a2, b2); while ((U)a1 * a1 + (U)a2 * a2 > (U)b1 * b1 + (U)b2 * b2) { swap(a1, b1), swap(a2, b2); T k = divround<U>((U)a1 * b1 + (U)a2 * b2, (U)a1 * a1 + (U)a2 * a2); b1 -= k * a1, b2 -= k * a2; } return make_pair(a1, a2); } template <class T = int, class U = ll> pair<T, T> mint_to_rat(const T &r, const T &m) { auto [p, q] = svp2<T, U>(make_pair(r, T(1)), make_pair(m, T(0))); if (q < 0) p = -p, q = -q; return make_pair(p, q); } template <class M, class T = int, class U = ll> pair<T, T> mint_to_rat(const M &x) { return mint_to_rat<T, U>((T)x.val(), (T)M::mod()); } void init() {} void main2() { LL(N, M, L, R); fps f(M + 1); rep(i, 1, M + 1) f.at(i) = 1; sfps gnum = {{L, 1}, {R + 1, -1}}; sfps gden = {{0, 1}, {1, -1}}; fps h = f * gnum.pow(N - 1, M + 1) * gden.pow(-(N - 1), M + 1); mint ans = 0; rep(i, M + 1) ans += h.at(i); PRINT(ans); } void test() { /* //*/ } } int main() { cauto CERR = [](string val, string color) { string s = "\033[" + color + "m" + val + "\033[m"; /* コードテストで確認する際にコメントアウトを外す cerr << val; //*/ }; CERR("\n[FAST_IO]\n\n", "34"); cin.tie(0); ios::sync_with_stdio(false); CERR("\n[FAST_IO]\n\n", "32"); cout << fixed << setprecision(20); test(); init(); CERR("\n[SINGLE_TESTCASE]\n\n", "36"); main2(); }