結果

問題 No.2255 Determinant Sum
ユーザー tassei903
提出日時 2025-04-11 16:02:17
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 128 ms / 2,000 ms
コード長 3,355 bytes
コンパイル時間 341 ms
コンパイル使用メモリ 82,624 KB
実行使用メモリ 77,256 KB
最終ジャッジ日時 2025-04-11 16:02:22
合計ジャッジ時間 4,352 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = lambda :sys.stdin.readline()[:-1]
ni = lambda :int(input())
na = lambda :list(map(int,input().split()))
yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES")
no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO")
#######################################################################

#2D matrix

def E(n):
    A = [[0 for j in range(n)]for i in range(n)]
    for i in range(n):
        A[i][i] = 1
    return A

def add(x,y):
    return x + y

def mul(x, y):
    return x * y


def mat_add(A, B, replace=False):
    assert len(A)==len(B) and len(A[0]) == len(B[0])
    if not replace:
        A = [a.copy() for a in A]
    n = len(A)
    m = len(A[0])
    for i in range(n):
        for j in range(m):
            A[i][j] = add(A[i][j], B[i][j])
    return A


def mat_mul(A,B):
    assert len(A[0]) == len(B)
    n = len(A)
    m = len(B[0])
    p = len(A[0])
    R = [[0 for j in range(m)]for i in range(n)]
    for i in range(n):
        for j in range(m):
            for k in range(p):
                R[i][j] += mul(A[i][k],B[k][j])
    return R

def mat_pow(A, x):
    assert len(A)==len(A[0])
    n = len(A)
    R = E(n)
    while x > 0:
        if x&1:
            R = mat_mul(R, A)
        A = mat_mul(A,A)
        x >>= 1
    return R

def determinant(A, replace=False):
    if not replace:
        A = [a.copy() for a in A]
    n = len(A)
    res = 1
    for i, a_i in enumerate(A):
        if a_i[i] == 0:
            for j in range(i+1, n):
                if A[j][i]:
                    break
            else:
                return 0
            A[i], A[j] = A[j], A[i]
            a_i = A[i]
            res = -res
        inv = pow(a_i[i], mod-2, mod)
        for j in range(i+1, n):
            a_j = A[j]
            t = a_j[i] * inv % mod
            for k in range(i+1, n):
                a_j[k] -= t * a_i[k]
                a_j[k] %= mod
    for i in range(n):
        res *= A[i][i]
        res %= mod
    return res

def mat_pri(A):
    for i in A:
        print(*i)
# \prod_i a[i][p[i]] * (p^(パス以外の-1の個数))
def solve2(n, a):
    for i in range(n):
        c = 0
        for j in range(n):
            if a[i][j] == -1:
                c += 1
        if c >= 2:
            return 0

    for j in range(n):
        c = 0
        for i in range(n):
            if a[i][j] == -1:
                c += 1
        if c >= 2:
            return 0
    for i in range(n):
        c = 0
        for j in range(n):
            if a[i][j] == -1:
                c += 1
        if c:
            for j in range(n):
                if a[i][j] == 1:
                    a[i][j] = 0
            
    for j in range(n):
        c = 0
        for i in range(n):
            if a[i][j] == -1:
                c += 1
        if c:
            for i in range(n):
                if a[i][j] == 1:
                    a[i][j] = 0
    for i in range(n):
        for j in range(n):
            if a[i][j] == -1:
                a[i][j] = 1
    return determinant(a)
    

for _ in range(ni()):
    n, p = na()
    mod = p
    a = [na() for i in range(n)]
    if p != 2:

        c = 0
        for i in range(n):
            c += a[i].count(-1)
        if c:
            print(0)
        else:
            print(determinant(a))
    else:
        print(solve2(n, a))
0