結果

問題 No.3099 Parentheses Decomposition
ユーザー urectanc
提出日時 2025-04-11 21:34:11
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 12 ms / 2,000 ms
コード長 7,861 bytes
コンパイル時間 13,865 ms
コンパイル使用メモリ 402,468 KB
実行使用メモリ 8,448 KB
最終ジャッジ日時 2025-04-11 21:34:26
合計ジャッジ時間 13,534 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #

use proconio::{input, marker::Chars};

type Mint = modint::ModInt998244353;

fn main() {
    input! {
        n: usize,
        s: Chars,
    }

    let m = n / 2;
    let mut fact = vec![Mint::new(1); m + 1];
    let mut finv = vec![Mint::new(1); m + 1];
    for i in 2..=m {
        fact[i] = fact[i - 1] * i;
    }
    finv[m] = fact[m].inv();
    for i in (2..=m).rev() {
        finv[i - 1] = finv[i] * i;
    }
    let binom = |n: usize, k: usize| {
        if k > n {
            Mint::new(0)
        } else {
            fact[n] * finv[k] * finv[n - k]
        }
    };

    let is_type_a = (0..n / 2).all(|i| s[i] == '(');

    let ans = if is_type_a {
        (0..=m)
            .map(|i| {
                let x = binom(m, i);
                x * x
            })
            .reduce(|acc, e| acc + e)
            .unwrap()
    } else {
        Mint::new(2).pow(m as u64)
    };

    println!("{}", ans);
}

#[allow(dead_code)]
mod modint {
    use std::{
        fmt::{Debug, Display},
        iter::{Product, Sum},
        ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
        str::FromStr,
    };

    pub type ModInt998244353 = ModInt<998244353>;
    pub type ModInt1000000007 = ModInt<1000000007>;

    type Val = u64;

    #[derive(Clone, Copy, PartialEq, Eq)]
    pub struct ModInt<const M: Val> {
        val: Val,
    }

    impl<const M: Val> ModInt<M> {
        const IS_PRIME: bool = is_prime(M as u32);

        pub const fn modulus() -> Val {
            M
        }

        pub const fn new(val: Val) -> Self {
            assert!(M < (1 << 31));
            Self {
                val: val.rem_euclid(M),
            }
        }

        pub const fn new_unchecked(val: Val) -> Self {
            Self { val }
        }

        pub const fn val(&self) -> Val {
            self.val
        }

        pub fn pow(self, mut exp: u64) -> Self {
            let mut result = Self::new(1);
            let mut base = self;
            while exp > 0 {
                if exp & 1 == 1 {
                    result *= base;
                }
                base *= base;
                exp >>= 1;
            }
            result
        }

        pub fn inv(self) -> Self {
            assert!(Self::IS_PRIME);
            self.pow(M as u64 - 2).into()
        }
    }

    impl<const M: Val> Display for ModInt<M> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.val)
        }
    }

    impl<const M: Val> Debug for ModInt<M> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.val)
        }
    }

    impl<const M: Val> FromStr for ModInt<M> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let value = s.parse::<Val>()?;
            Ok(ModInt::new(value))
        }
    }

    impl<const M: Val> Neg for ModInt<M> {
        type Output = Self;
        fn neg(mut self) -> Self::Output {
            if self.val > 0 {
                self.val = M - self.val;
            }
            self
        }
    }

    impl<const M: Val, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
        fn add_assign(&mut self, rhs: T) {
            self.val += rhs.into().val;
            if self.val >= M {
                self.val -= M;
            }
        }
    }

    impl<const M: Val, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
        fn sub_assign(&mut self, rhs: T) {
            self.val = self.val.wrapping_sub(rhs.into().val);
            if self.val > M {
                self.val = self.val.wrapping_add(M);
            }
        }
    }

    impl<const M: Val, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
        fn mul_assign(&mut self, rhs: T) {
            self.val = self.val * rhs.into().val % M;
        }
    }

    impl<const M: Val, T: Into<ModInt<M>>> DivAssign<T> for ModInt<M> {
        fn div_assign(&mut self, rhs: T) {
            *self *= rhs.into().inv();
        }
    }

    macro_rules! impl_binnary_operators {
    ($({ $trait: ident, $trait_assign: ident, $fn: ident, $fn_assign: ident, $type: ty }),*) => {$(
        impl<const M: Val, T: Into<$type>> $trait<T> for $type {
            type Output = $type;
            fn $fn(mut self, rhs: T) -> $type {
                self.$fn_assign(rhs.into());
                self
            }
        }

        impl<const M: Val> $trait<&$type> for $type {
            type Output = $type;
            fn $fn(self, rhs: &$type) -> $type {
                self.$fn(*rhs)
            }
        }

        impl<const M: Val, T: Into<$type>> $trait<T> for &$type {
            type Output = $type;
            fn $fn(self, rhs: T) -> $type {
                (*self).$fn(rhs.into())
            }
        }

        impl<const M: Val> $trait<&$type> for &$type {
            type Output = $type;
            fn $fn(self, rhs: &$type) -> $type {
                (*self).$fn(*rhs)
            }
        }

        impl<const M: Val> $trait_assign<&$type> for $type {
            fn $fn_assign(&mut self, rhs: &$type) {
                *self = self.$fn(*rhs);
            }
        }
    )*};
}

    impl_binnary_operators!(
        {Add, AddAssign, add, add_assign, ModInt<M>},
        {Sub, SubAssign, sub, sub_assign, ModInt<M>},
        {Mul, MulAssign, mul, mul_assign, ModInt<M>},
        {Div, DivAssign, div, div_assign, ModInt<M>}
    );

    impl<const M: Val> Sum for ModInt<M> {
        fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(0), Add::add)
        }
    }

    impl<const M: Val> Product for ModInt<M> {
        fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(1), Mul::mul)
        }
    }

    impl<'a, const M: Val> Sum<&'a Self> for ModInt<M> {
        fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.fold(Self::new(0), Add::add)
        }
    }

    impl<'a, const M: Val> Product<&'a Self> for ModInt<M> {
        fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.fold(Self::new(1), Mul::mul)
        }
    }

    macro_rules! impl_rem_euclid_signed {
    ($($ty:tt),*) => {
        $(
            impl<const M: Val> From<$ty> for ModInt<M> {
                fn from(value: $ty) -> ModInt<M> {
                    Self::new_unchecked((value as i64).rem_euclid(M as i64) as Val)
                }
            }
        )*
    };
}
    impl_rem_euclid_signed!(i8, i16, i32, i64, isize);

    macro_rules! impl_rem_euclid_unsigned {
    ($($ty:tt),*) => {
        $(
            impl<const M: Val> From<$ty> for ModInt<M> {
                fn from(value: $ty) -> ModInt<M> {
                    Self::new_unchecked((value as u64).rem_euclid(M as u64) as Val)
                }
            }
        )*
    };
}
    impl_rem_euclid_unsigned!(u8, u16, u32, u64, usize);

    const fn is_prime(n: u32) -> bool {
        const fn is_sprp(n: u32, a: u32) -> bool {
            let (n, a) = (n as u64, a as u64);
            let mut d = n >> (n - 1).trailing_zeros();
            let mut y = {
                let (mut res, mut base, mut e) = (1, a, d);
                while e > 0 {
                    if e & 1 == 1 {
                        res = res * base % n;
                    }
                    base = base * base % n;
                    e >>= 1;
                }
                res
            };
            while d != n - 1 && y != 1 && y != n - 1 {
                y = y * y % n;
                d <<= 1;
            }
            y == n - 1 || d & 1 == 1
        }

        if matches!(n, 2 | 7 | 61) {
            return true;
        }
        if n <= 1 || n % 2 == 0 {
            return false;
        }
        is_sprp(n, 2) && is_sprp(n, 7) && is_sprp(n, 61)
    }
}
0