結果
問題 | No.3105 Parallel Connection and Spanning Trees |
ユーザー |
|
提出日時 | 2025-04-11 22:51:47 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,384 ms / 5,000 ms |
コード長 | 6,807 bytes |
コンパイル時間 | 456 ms |
コンパイル使用メモリ | 82,768 KB |
実行使用メモリ | 81,492 KB |
最終ジャッジ日時 | 2025-04-11 22:52:08 |
合計ジャッジ時間 | 18,381 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b = map(int, input().split()) a += index b += index edge[a].add(b) if not dir: edge[b].add(a) return edge def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b,c = map(int, input().split()) a += index b += index edge[a].add((b,c)) if not dir: edge[b].add((a,c)) return edge mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") def acc(a:list[int]): sa = [0]*(len(a)+1) for i in range(len(a)): sa[i+1] = a[i] + sa[i] return sa prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) sys.setrecursionlimit(10**6) import pypyjit pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right class SegTree: def __init__(self, op, e, lst): self.n = len(lst) self.size = 1 << (self.n - 1).bit_length() self.op = op self.e = e self.data = [e] * (2 * self.size) for i in range(self.n): self.data[self.size + i] = lst[i] for i in range(self.size - 1, 0, -1): self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def get(self, i): return self.data[self.size+i] def add(self, i, x): i += self.size self.data[i] = self.op(x, self.data[i]) while i > 1: i >>= 1 self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def set(self, i, x): i += self.size self.data[i] = x while i > 1: i >>= 1 self.data[i] = self.op(self.data[2*i], self.data[2*i+1]) def prod(self, l, r): if r <= l: return self.e lres = self.e rres = self.e l += self.size r += self.size while l < r: if l & 1: lres = self.op(lres, self.data[l]) l += 1 if r & 1: r -= 1 rres = self.op(self.data[r], rres) l >>= 1 r >>= 1 return self.op(lres, rres) def all_prod(self): return self.data[1] def max_right(self, l, g): assert 0<=l and l<=self.n assert g(self.e) if l == self.n: return self.n l += self.size sm = self.e while 1: while l&1 == 0: l >>= 1 if not(g(self.op(sm, self.data[l]))): while l < self.size: l = 2*l nsm = self.op(sm, self.data[l]) if g(nsm): sm = nsm l += 1 return l-self.size sm = self.op(sm, self.data[l]) l += 1 if (l&-l) == l: break return self.n def min_left(self, r, g): if r == -1: r = self.n assert 0<=r and r<=self.n assert g(self.e) if r == 0: return 0 r += self.size sm = self.e while 1: r -= 1 while (r>1 and r&1): r >>= 1 if not(g(self.op(self.data[r], sm))): while r < self.size: r = 2*r+1 nsm = self.op(self.data[r], sm) if g(nsm): sm = nsm r -= 1 return r + 1 -self.size sm = self.op(self.data[r], sm) if (r&-r) == r: break return 0 def __str__(self): return str(self.data[self.size:self.size+self.n]) def determinant(a, mod = mod): # assert len(a) == len(a[0]) n = len(a) res = 1 for i in range(n): for j in range(i,n): if a[j][i] == 0: continue if i != j: a[i],a[j] = a[j],a[i] res *= -1 break else: # det = 0 return 0 res *= a[i][i] res %= mod # det != 0 if a[i][i]%mod == 0: return 0 inv = pow(a[i][i],-1,mod) for j in range(n): a[i][j] *= inv a[i][j] %= mod for j in range(i+1,n): tmp = a[j][i] for k in range(n): a[j][k] -= a[i][k]*tmp a[j][k] %= mod return res%mod k = II() ans = [0] * k # 適当な全域木の数え上げ r = [0] * k for idx in range(k): n,m = MI() g1 = [[0] * n for i in range(n)] g2 = [[0] * (n-1) for i in range(n-1)] for i in range(m): u,v = MI_1() g1[u][v] -= 1 g1[v][u] -= 1 if u == 0 and v == 1: continue if u != 0: u -= 1 v -= 1 g2[u][v] -= 1 g2[v][u] -= 1 # print(g1, g2) for i in range(n): g1[i][i] = -sum(g1[i]) for i in range(n-1): g2[i][i] = -sum(g2[i]) g1 = [[g1[i][j] for j in range(n-1)] for i in range(n-1)] g2 = [[g2[i][j] for j in range(n-2)] for i in range(n-2)] r1 = determinant(g1) r2 = determinant(g2) # print(r1, r2) ans[idx] = (r1 * 2 + r2) % mod r[idx] = r1 # print(ans) # print(r) def op(x, y): return x * y % mod st = SegTree(op, 1, ans) tans = 0 for i in range(k): tmp = st.prod(0, i) * st.prod(i+1, k) * r[i] % mod tans += tmp print(tans % mod)