結果

問題 No.3105 Parallel Connection and Spanning Trees
ユーザー lif4635
提出日時 2025-04-11 22:51:47
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,384 ms / 5,000 ms
コード長 6,807 bytes
コンパイル時間 456 ms
コンパイル使用メモリ 82,768 KB
実行使用メモリ 81,492 KB
最終ジャッジ日時 2025-04-11 22:52:08
合計ジャッジ時間 18,381 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #

# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]

def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b = map(int, input().split())
        a += index
        b += index
        edge[a].add(b)
        if not dir:
            edge[b].add(a)
    return edge

def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b,c = map(int, input().split())
        a += index
        b += index
        edge[a].add((b,c))
        if not dir:
            edge[b].add((a,c))
    return edge

mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
def acc(a:list[int]):
    sa = [0]*(len(a)+1)
    for i in range(len(a)):
        sa[i+1] = a[i] + sa[i]
    return sa

prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
sys.setrecursionlimit(10**6)
import pypyjit
pypyjit.set_param('max_unroll_recursion=-1')

from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right

class SegTree:
    def __init__(self, op, e, lst):
        self.n = len(lst)
        self.size = 1 << (self.n - 1).bit_length()
        self.op = op
        self.e = e
        self.data = [e] * (2 * self.size)
        for i in range(self.n):
            self.data[self.size + i] = lst[i]
        for i in range(self.size - 1, 0, -1):
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def get(self, i):
        return self.data[self.size+i]
    
    def add(self, i, x):
        i += self.size
        self.data[i] = self.op(x, self.data[i])
        while i > 1:
            i >>= 1
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def set(self, i, x):
        i += self.size
        self.data[i] = x
        while i > 1:
            i >>= 1
            self.data[i] = self.op(self.data[2*i], self.data[2*i+1])
    
    def prod(self, l, r):
        if r <= l:
            return self.e
        lres = self.e
        rres = self.e
        l += self.size
        r += self.size
        while l < r:
            if l & 1:
                lres = self.op(lres, self.data[l])
                l += 1
            if r & 1:
                r -= 1
                rres = self.op(self.data[r], rres)
            l >>= 1
            r >>= 1
        return self.op(lres, rres)
    
    def all_prod(self):
        return self.data[1]
    
    def max_right(self, l, g):
        assert 0<=l and l<=self.n
        assert g(self.e)
        if l == self.n: return self.n
        l += self.size
        sm = self.e
        while 1:
            while l&1 == 0:
                l >>= 1
            if not(g(self.op(sm, self.data[l]))):
                while l < self.size:
                    l = 2*l
                    nsm = self.op(sm, self.data[l])
                    if g(nsm):
                        sm = nsm
                        l += 1
                return l-self.size
            sm = self.op(sm, self.data[l])
            l += 1
            if (l&-l) == l: break
        return self.n
    
    def min_left(self, r, g):
        if r == -1: r = self.n
        assert 0<=r and r<=self.n
        assert g(self.e)
        if r == 0: return 0
        r += self.size
        sm = self.e
        while 1:
            r -= 1
            while (r>1 and r&1):
                r >>= 1
            if not(g(self.op(self.data[r], sm))):
                while r < self.size:
                    r = 2*r+1
                    nsm = self.op(self.data[r], sm)
                    if g(nsm):
                        sm = nsm
                        r -= 1
                return r + 1 -self.size
            sm = self.op(self.data[r], sm)
            if (r&-r) == r: break
        return 0
    
    def __str__(self):
        return str(self.data[self.size:self.size+self.n])

def determinant(a, mod = mod):
    # assert len(a) == len(a[0])
    n = len(a)
    res = 1
    for i in range(n):
        for j in range(i,n):
            if a[j][i] == 0: continue
            if i != j:
                a[i],a[j] = a[j],a[i]
                res *= -1
            break
        else:
            # det = 0
            return 0
        
        res *= a[i][i]
        res %= mod
        # det != 0
        if a[i][i]%mod == 0: return 0
        
        inv = pow(a[i][i],-1,mod)
        for j in range(n):
            a[i][j] *= inv
            a[i][j] %= mod
        for j in range(i+1,n):
            tmp = a[j][i]
            for k in range(n):
                a[j][k] -= a[i][k]*tmp
                a[j][k] %= mod
    return res%mod

k = II()


ans = [0] * k
# 適当な全域木の数え上げ
r = [0] * k
for idx in range(k):
    n,m = MI()
    g1 = [[0] * n for i in range(n)]
    g2 = [[0] * (n-1) for i in range(n-1)]
    
    for i in range(m):
        u,v = MI_1()
        g1[u][v] -= 1
        g1[v][u] -= 1
        
        if u == 0 and v == 1:
            continue
        if u != 0:
            u -= 1
        v -= 1
        g2[u][v] -= 1
        g2[v][u] -= 1
    
    # print(g1, g2)
    
    for i in range(n):
        g1[i][i] = -sum(g1[i])
    for i in range(n-1):
        g2[i][i] = -sum(g2[i])
    
    g1 = [[g1[i][j] for j in range(n-1)] for i in range(n-1)]
    g2 = [[g2[i][j] for j in range(n-2)] for i in range(n-2)]
    
    r1 = determinant(g1)
    r2 = determinant(g2)
    # print(r1, r2)
    ans[idx] = (r1 * 2 + r2) % mod
    r[idx] = r1

# print(ans)
# print(r)

def op(x, y):
    return x * y % mod

st = SegTree(op, 1, ans)

tans = 0
for i in range(k):
    tmp = st.prod(0, i) * st.prod(i+1, k) * r[i] % mod
    tans += tmp

print(tans % mod)
0