結果
問題 | No.3104 Simple Graph Problem |
ユーザー |
|
提出日時 | 2025-04-11 23:01:43 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 522 ms / 2,000 ms |
コード長 | 4,116 bytes |
コンパイル時間 | 161 ms |
コンパイル使用メモリ | 82,344 KB |
実行使用メモリ | 112,280 KB |
最終ジャッジ日時 | 2025-04-11 23:02:12 |
合計ジャッジ時間 | 16,909 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 65 |
ソースコード
import sys input = lambda :sys.stdin.readline()[:-1] ni = lambda :int(input()) na = lambda :list(map(int,input().split())) yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES") no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO") ####################################################################### from collections import defaultdict class UnionFind(): def __init__(self, n): self.n = n self.parents = [-1] * n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[x] > self.parents[y]: x, y = y, x self.parents[x] += self.parents[y] self.parents[y] = x def size(self, x): return -self.parents[self.find(x)] def same(self, x, y): return self.find(x) == self.find(y) def members(self, x): root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): return len(self.roots()) def all_group_members(self): group_members = defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members def __str__(self): return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items()) # 木のとき葉から一意に操作される # 偶数長のサイクル # 奇数長のサイクル がある時必ずできそう mod = 998244353 n, m = na() b = na() uf = UnionFind(n * 2) g = [[] for i in range(n)] flag = False cnt = 0 for i in range(m): u, v = na() u -= 1 v -= 1 if not (uf.same(u, v) or uf.same(u, v + n)): uf.union(u, v + n) uf.union(u+n, v) g[u].append((v, i)) g[v].append((u, i)) cnt += 1 elif uf.same(u, v) and (not flag): flag = True g[u].append((v, i)) g[v].append((u, i)) cnt += 1 if cnt == n - 1: dp = [-1] * n q = [0] seen = [0] * n seen[0] = 1 p = [-1] * n pi = [-1] * n et = [] while q: x = q.pop() et.append(x) for y, j in g[x]: if not seen[y]: p[y] = x pi[y] = j q.append(y) seen[y] = 1 ans = [0] * m for i in et[1:][::-1]: ans[pi[i]] = b[i] % mod b[p[i]] -= b[i] b[p[i]] %= mod b[i] = 0 if b[0] == 0: print(*ans) else: print(-1) else: deg = [len(g[i]) for i in range(n)] q = [i for i in range(n) if deg[i] == 1] ans = [0] * m seen = [0] * n # print(g) while q: x = q.pop() seen[x] = 1 for z, j in g[x]: if seen[z]:continue y = z i = j break ans[i] = b[x] b[y] -= b[x] b[y] %= mod b[x] = 0 deg[y] -= 1 if deg[y] == 1: q.append(y) X = -1 for i in range(n): if deg[i] == 2: X = i break P = [] PI = [] Y = X pre = -1 T = 0 while True: for z, j in g[Y]: if z != pre and (not seen[z]): P.append(z) PI.append(j) pre = Y Y = z break else: assert False T += 1 # assert T <= n * 2 if Y == X: break Z = 0 for i in P: Z += b[i] Z = Z * pow(2, mod-2, mod) % mod a = [0, 0] for i in range(len(P)//2*2): a[i % 2] += b[P[i]] for i in range(len(P)): ans[PI[i]] = (Z - a[i % 2 ^ 1]) % mod a[i % 2] -= b[P[i]] a[i % 2] += b[P[(i - 1) % len(P)]] a[i % 2] %= mod print(*ans)