結果
問題 | No.3105 Parallel Connection and Spanning Trees |
ユーザー |
![]() |
提出日時 | 2025-04-11 23:09:11 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 315 ms / 5,000 ms |
コード長 | 11,210 bytes |
コンパイル時間 | 3,470 ms |
コンパイル使用メモリ | 289,408 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-04-11 23:09:34 |
合計ジャッジ時間 | 6,662 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
//https://drken1215.hatenablog.com/entry/2024/01/08/195300 #include <bits/stdc++.h> using namespace std; // matrix template<class mint> struct MintMatrix { // inner value vector<vector<mint>> val; // constructors MintMatrix(int H, int W, mint x = 0) : val(H, vector<mint>(W, x)) {} MintMatrix(const MintMatrix &mat) : val(mat.val) {} void init(int H, int W, mint x = 0) { val.assign(H, vector<mint>(W, x)); } void resize(int H, int W) { val.resize(H); for (int i = 0; i < H; ++i) val[i].resize(W); } // getter and debugger constexpr int height() const { return (int)val.size(); } constexpr int width() const { return (int)val[0].size(); } vector<mint>& operator [] (int i) { return val[i]; } constexpr vector<mint>& operator [] (int i) const { return val[i]; } friend constexpr ostream& operator << (ostream &os, const MintMatrix<mint> &mat) { os << endl; for (int i = 0; i < mat.height(); ++i) { for (int j = 0; j < mat.width(); ++j) { if (j) os << ", "; os << mat.val[i][j]; } os << endl; } return os; } // comparison operators constexpr bool operator == (const MintMatrix &r) const { return this->val == r.val; } constexpr bool operator != (const MintMatrix &r) const { return this->val != r.val; } // arithmetic operators constexpr MintMatrix& operator += (const MintMatrix &r) { assert(height() == r.height()); assert(width() == r.width()); for (int i = 0; i < height(); ++i) { for (int j = 0; j < width(); ++j) { val[i][j] += r[i][j]; } } return *this; } constexpr MintMatrix& operator -= (const MintMatrix &r) { assert(height() == r.height()); assert(width() == r.width()); for (int i = 0; i < height(); ++i) { for (int j = 0; j < width(); ++j) { val[i][j] -= r[i][j]; } } return *this; } constexpr MintMatrix& operator *= (const mint &v) { for (int i = 0; i < height(); ++i) for (int j = 0; j < width(); ++j) val[i][j] *= v; return *this; } constexpr MintMatrix& operator *= (const MintMatrix &r) { assert(width() == r.height()); MintMatrix<mint> res(height(), r.width()); for (int i = 0; i < height(); ++i) for (int j = 0; j < r.width(); ++j) for (int k = 0; k < width(); ++k) res[i][j] += val[i][k] * r[k][j]; return (*this) = res; } constexpr MintMatrix operator + () const { return MintMatrix(*this); } constexpr MintMatrix operator - () const { return MintMatrix(*this) *= mint(-1); } constexpr MintMatrix operator + (const MintMatrix &r) const { return MintMatrix(*this) += r; } constexpr MintMatrix operator - (const MintMatrix &r) const { return MintMatrix(*this) -= r; } constexpr MintMatrix operator * (const mint &v) const { return MintMatrix(*this) *= v; } constexpr MintMatrix operator * (const MintMatrix &r) const { return MintMatrix(*this) *= r; } // pow constexpr MintMatrix pow(long long n) const { assert(height() == width()); MintMatrix<mint> res(height(), width()), mul(*this); while (n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } friend constexpr MintMatrix<mint> pow(const MintMatrix<mint> &mat, long long n) { return mat.pow(n); } // gauss-jordan constexpr int find_pivot(int cur_rank, int col) const { int pivot = -1; for (int row = cur_rank; row < height(); ++row) { if (val[row][col] != 0) { pivot = row; break; } } return pivot; } constexpr void sweep(int cur_rank, int col, int pivot) { swap(val[pivot], val[cur_rank]); auto ifac = val[cur_rank][col].inv(); for (int col2 = 0; col2 < width(); ++col2) { val[cur_rank][col2] *= ifac; } for (int row = 0; row < height(); ++row) { if (row != cur_rank && val[row][col] != 0) { auto fac = val[row][col]; for (int col2 = 0; col2 < width(); ++col2) { val[row][col2] -= val[cur_rank][col2] * fac; } } } } constexpr int gauss_jordan(int not_sweep_width = 0) { int rank = 0; for (int col = 0; col < width(); ++col) { if (col == width() - not_sweep_width) break; int pivot = find_pivot(rank, col); if (pivot == -1) continue; sweep(rank++, col, pivot); } return rank; } friend constexpr int gauss_jordan(MintMatrix<mint> &mat, int not_sweep_width = 0) { return mat.gauss_jordan(not_sweep_width); } friend constexpr int linear_equation (const MintMatrix<mint> &mat, const vector<mint> &b, vector<mint> &res) { // extend MintMatrix<mint> A(mat.height(), mat.width() + 1); for (int i = 0; i < mat.height(); ++i) { for (int j = 0; j < mat.width(); ++j) A[i][j] = mat.val[i][j]; A[i].back() = b[i]; } int rank = A.gauss_jordan(1); // check if it has no solution for (int row = rank; row < mat.height(); ++row) if (A[row].back() != 0) return -1; // answer res.assign(mat.width(), 0); for (int i = 0; i < rank; ++i) res[i] = A[i].back(); return rank; } friend constexpr int linear_equation(const MintMatrix<mint> &mat, const vector<mint> &b) { vector<mint> res; return linear_equation(mat, b, res); } // determinant constexpr mint det() const { MintMatrix<mint> A(*this); int rank = 0; mint res = 1; for (int col = 0; col < width(); ++col) { int pivot = A.find_pivot(rank, col); if (pivot == -1) return mint(0); res *= A[pivot][rank]; A.sweep(rank++, col, pivot); } return res; } friend constexpr mint det(const MintMatrix<mint> &mat) { return mat.det(); } }; // modint template<int MOD> struct Fp { // inner value long long val; // constructor constexpr Fp() : val(0) { } constexpr Fp(long long v) : val(v % MOD) { if (val < 0) val += MOD; } constexpr Fp(const Fp &v) : val(v.get()) { } constexpr long long get() const { return val; } constexpr int get_mod() const { return MOD; } // arithmetic operators constexpr Fp operator + () const { return Fp(*this); } constexpr Fp operator - () const { return Fp(0) - Fp(*this); } constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; } constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; } constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; } constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp &r) { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp &r) { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp &r) { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp &r) { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp pow(long long n) const { Fp res(1), mul(*this); while (n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } constexpr Fp inv() const { Fp res(1), div(*this); return res / div; } // other operators constexpr bool operator == (const Fp &r) const { return this->val == r.val; } constexpr bool operator != (const Fp &r) const { return this->val != r.val; } constexpr Fp& operator ++ () { ++val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -- () { if (val == 0) val += MOD; --val; return *this; } constexpr Fp operator ++ (int) const { Fp res = *this; ++*this; return res; } constexpr Fp operator -- (int) const { Fp res = *this; --*this; return res; } friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) { return os << x.val; } friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) { return r.pow(n); } friend constexpr Fp<MOD> inv(const Fp<MOD> &r) { return r.inv(); } }; // AOJ 3369 Namori Counting (OUPC 2023 day2-D) int f(vector<vector<int>> G){ int N = G.size(); vector<int> deg(N, 0); for(int i=0;i<N;i++) for(int j=0;j<N;j++) deg[i] += G[i][j]; const int MOD = 998244353; using mint = Fp<MOD>; // ラプラシアン行列の余因子を求めるため、行・列の末尾を削る MintMatrix<mint> L(N - 1, N - 1, 0); for (int i = 0; i < N - 1; ++i) { for (int j = 0; j < N - 1; ++j) { if (i == j) L[i][j] = deg[i]; else L[i][j] = -G[i][j]; } } return det(L).val; } #include<atcoder/modint> using namespace atcoder; using mint = modint998244353; void solve(){ int k; cin >> k; mint a = 1, b = 0; for(int _=0;_<k;_++){ int n,m; cin >> n >> m; vector<int> u(m), v(m); for(int i=0;i<m;i++){ cin >> u[i] >> v[i]; u[i]--; v[i]--; } int x,y; { vector G(n, vector<int>(n, 0)); for(int i=0;i<m;i++){ G[u[i]][v[i]] = 1; G[v[i]][u[i]] = 1; } x = f(G); } { vector G(n-1, vector<int>(n-1, 0)); for(int i=0;i<m;i++){ if(u[i]) u[i]--; if(v[i]) v[i]--; G[u[i]][v[i]] += 1; G[v[i]][u[i]] += 1; } G[0][0] = 0; if(n > 2) y = f(G); else y = 1; } // cout << x << " " << y << endl; mint na = 0, nb = 0; na += a * y; na += a * x * 2; nb += b * y; nb += b * x * 2; nb += a * x; a = na; b = nb; // cout << a.val() << " " << b.val() << endl; } cout << b.val() << endl; } int main() { solve(); }