結果
| 問題 |
No.3105 Parallel Connection and Spanning Trees
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-11 23:23:37 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,456 bytes |
| コンパイル時間 | 2,165 ms |
| コンパイル使用メモリ | 175,636 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-04-11 23:23:47 |
| 合計ジャッジ時間 | 9,831 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | WA * 32 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 1;
template<long long mod>
class modint{
long long x;
public:
modint(long long x=0) : x((x%mod+mod)%mod) {}
modint operator-() const {
return modint(-x);
}
bool operator==(const modint& a){
if(x == a) return true;
else return false;
}
bool operator==(long long a){
if(x == a) return true;
else return false;
}
bool operator!=(const modint& a){
if(x != a) return true;
else return false;
}
bool operator!=(long long a){
if(x != a) return true;
else return false;
}
modint& operator+=(const modint& a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
modint& operator-=(const modint& a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
modint& operator*=(const modint& a) {
(x *= a.x) %= mod;
return *this;
}
modint operator+(const modint& a) const {
modint res(*this);
return res+=a;
}
modint operator-(const modint& a) const {
modint res(*this);
return res-=a;
}
modint operator*(const modint& a) const {
modint res(*this);
return res*=a;
}
modint pow(long long t) const {
if (!t) return 1;
modint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
modint inv() const {
return pow(mod-2);
}
modint& operator/=(const modint& a) {
return (*this) *= a.inv();
}
modint operator/(const modint& a) const {
modint res(*this);
return res/=a;
}
friend std::istream& operator>>(std::istream& is, modint& m) noexcept {
is >> m.x;
m.x %= mod;
if (m.x < 0) m.x += mod;
return is;
}
friend ostream& operator<<(ostream& os, const modint& m){
os << m.x;
return os;
}
};
template<typename T>
struct matrix{
vector<vector<T>> A;
matrix(){}
matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)){}
matrix(size_t n) : A(n, vector<T>(n, 0)){};
size_t height() const{return (A.size());}
size_t width() const{return (A[0].size());}
inline const vector<T> &operator[](int k) const{return (A.at(k));}
inline vector<T> &operator[](int k){return (A.at(k));}
static matrix I(size_t n){
matrix mat(n);
for(int i=0; i<n; i++) mat[i][i] = 1;
return (mat);
}
matrix &operator+=(const matrix &B){
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i=0; i<n; i++)for(int j=0; j<m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
matrix &operator-=(const matrix &B){
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i=0; i<n; i++)for(int j=0; j<m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
matrix &operator*=(const matrix &B){
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
matrix &operator^=(long long k){
matrix B = matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
matrix operator+(const matrix &B) const{
return (matrix(*this) += B);
}
matrix operator-(const matrix &B) const{
return (matrix(*this) -= B);
}
matrix operator*(const matrix &B) const{
return (matrix(*this) *= B);
}
matrix operator^(const long long k) const{
return (matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, matrix &p){
size_t n = p.height(), m = p.width();
for(int i=0; i<n; i++){
os << "[";
for(int j=0; j<m; j++){
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant(){
matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i=0; i<width(); i++) {
int idx = -1;
for(int j=i; j<width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j=0; j<width(); j++) {
B[i][j] /= vv;
}
for(int j=i+1; j<width(); j++) {
T a = B[j][i];
for(int k=0; k<width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
using mint = modint<MOD998244353>;
template<typename T>
T count_spanning_tree(vector<vector<int>> &G){
int n = (int)G.size();
if(n==1) return T(1);
matrix<T> L(n);
for(int v=0; v<n; v++){
L[v][v] = T((int)G[v].size());
for(int to : G[v]) L[v][to]-=T(1);
}
matrix<T> L11(n-1);
for(int i=0; i<n-1; i++)for(int j=0; j<n-1; j++) L11[i][j]=L[i+1][j+1];
return L11.determinant();
}
void solve(){
int k; cin >> k;
vector<mint> cnt1(k, 0), cnt2(k, 0);
for(int i=0; i<k; i++){
int n, m; cin >> n >> m;
vector<vector<int>> G1(n), G2(n-1);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
u--; v--;
G1[u].push_back(v);
G1[v].push_back(u);
}
for(int v=0; v<n; v++){
for(int to : G1[v]){
if(v==0||v==1){
if(to==0||to==1) continue;
G2[0].pb(to-1);
}else{
if(to==0||to==1){
G2[v-1].pb(0);
}else{
G2[v-1].pb(to-1);
}
}
}
}
cnt1[i] = count_spanning_tree<mint>(G1);
cnt2[i] = count_spanning_tree<mint>(G2);
}
for(int i=0; i<k; i++){
cout << cnt1[i] << ' ' << cnt2[i] << '\n';
}
vector<vector<int>> G(2*k+2);
int x = 2*k, y = 2*k+1;
for(int i=0; i<k; i++){
G[x].pb(2*i);
G[2*i].pb(x);
G[y].pb(2*i+1);
G[2*i+1].pb(y);
}
mint ans = 0;
for(int i=0; i<k; i++){
mint sa = cnt1[i];
for(int j=0; j<k; j++){
if(i==j) continue;
sa *= cnt2[j] + cnt1[j]*mint(2);
}
ans += sa;
}
cout << ans << '\n';
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int T=1;
//cin >> T;
while(T--) solve();
}