結果
問題 |
No.3105 Parallel Connection and Spanning Trees
|
ユーザー |
|
提出日時 | 2025-04-11 23:24:02 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 545 ms / 5,000 ms |
コード長 | 7,370 bytes |
コンパイル時間 | 1,996 ms |
コンパイル使用メモリ | 175,008 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-04-11 23:24:11 |
合計ジャッジ時間 | 9,517 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 1; template<long long mod> class modint{ long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } bool operator==(const modint& a){ if(x == a) return true; else return false; } bool operator==(long long a){ if(x == a) return true; else return false; } bool operator!=(const modint& a){ if(x != a) return true; else return false; } bool operator!=(long long a){ if(x != a) return true; else return false; } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(long long t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } friend std::istream& operator>>(std::istream& is, modint& m) noexcept { is >> m.x; m.x %= mod; if (m.x < 0) m.x += mod; return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; template<typename T> struct matrix{ vector<vector<T>> A; matrix(){} matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)){} matrix(size_t n) : A(n, vector<T>(n, 0)){}; size_t height() const{return (A.size());} size_t width() const{return (A[0].size());} inline const vector<T> &operator[](int k) const{return (A.at(k));} inline vector<T> &operator[](int k){return (A.at(k));} static matrix I(size_t n){ matrix mat(n); for(int i=0; i<n; i++) mat[i][i] = 1; return (mat); } matrix &operator+=(const matrix &B){ size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i=0; i<n; i++)for(int j=0; j<m; j++) (*this)[i][j] += B[i][j]; return (*this); } matrix &operator-=(const matrix &B){ size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i=0; i<n; i++)for(int j=0; j<m; j++) (*this)[i][j] -= B[i][j]; return (*this); } matrix &operator*=(const matrix &B){ size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } matrix &operator^=(long long k){ matrix B = matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } matrix operator+(const matrix &B) const{ return (matrix(*this) += B); } matrix operator-(const matrix &B) const{ return (matrix(*this) -= B); } matrix operator*(const matrix &B) const{ return (matrix(*this) *= B); } matrix operator^(const long long k) const{ return (matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, matrix &p){ size_t n = p.height(), m = p.width(); for(int i=0; i<n; i++){ os << "["; for(int j=0; j<m; j++){ os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant(){ matrix B(*this); assert(width() == height()); T ret = 1; for(int i=0; i<width(); i++) { int idx = -1; for(int j=i; j<width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j=0; j<width(); j++) { B[i][j] /= vv; } for(int j=i+1; j<width(); j++) { T a = B[j][i]; for(int k=0; k<width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; using mint = modint<MOD998244353>; template<typename T> T count_spanning_tree(vector<vector<int>> &G){ int n = (int)G.size(); if(n==1) return T(1); matrix<T> L(n); for(int v=0; v<n; v++){ L[v][v] = T((int)G[v].size()); for(int to : G[v]) L[v][to]-=T(1); } matrix<T> L11(n-1); for(int i=0; i<n-1; i++)for(int j=0; j<n-1; j++) L11[i][j]=L[i+1][j+1]; return L11.determinant(); } void solve(){ int k; cin >> k; vector<mint> cnt1(k, 0), cnt2(k, 0); for(int i=0; i<k; i++){ int n, m; cin >> n >> m; vector<vector<int>> G1(n), G2(n-1); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; u--; v--; G1[u].push_back(v); G1[v].push_back(u); } for(int v=0; v<n; v++){ for(int to : G1[v]){ if(v==0||v==1){ if(to==0||to==1) continue; G2[0].pb(to-1); }else{ if(to==0||to==1){ G2[v-1].pb(0); }else{ G2[v-1].pb(to-1); } } } } cnt1[i] = count_spanning_tree<mint>(G1); cnt2[i] = count_spanning_tree<mint>(G2); } vector<vector<int>> G(2*k+2); int x = 2*k, y = 2*k+1; for(int i=0; i<k; i++){ G[x].pb(2*i); G[2*i].pb(x); G[y].pb(2*i+1); G[2*i+1].pb(y); } mint ans = 0; for(int i=0; i<k; i++){ mint sa = cnt1[i]; for(int j=0; j<k; j++){ if(i==j) continue; sa *= cnt2[j] + cnt1[j]*mint(2); } ans += sa; } cout << ans << '\n'; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }