結果
問題 |
No.3101 Range Eratosthenes Query
|
ユーザー |
|
提出日時 | 2025-04-12 08:54:35 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,947 ms / 3,000 ms |
コード長 | 23,686 bytes |
コンパイル時間 | 4,977 ms |
コンパイル使用メモリ | 327,104 KB |
実行使用メモリ | 263,640 KB |
最終ジャッジ日時 | 2025-04-12 08:55:52 |
合計ジャッジ時間 | 73,347 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 24 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__) #define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__) #define OVERLOAD_REP(_1, _2, _3, _4, name, ...) name #define REP1(n) for(ll i=0;i<n;i++) #define REP2(i, n) for (ll i=0;i<n;i++) #define REP3(i, a, n) for (ll i=a;i<n;i++) #define REP4(i, a, b, n) for(ll i=a;i<n;i+=b) #define rep(...) OVERLOAD_REP(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__) #define OVERLOAD_RREP(_1, _2, _3, _4, name, ...) name #define RREP1(n) for(ll i=n-1;i>=0;i--) #define RREP2(i, n) for(ll i=n-1;i>=0;i--) #define RREP3(i, a, n) for(ll i=n-1;i>=a;i--) #define RREP4(i, a, b, n) for(ll i=n-1;i>=a;i-=b) #define rrep(...) OVERLOAD_RREP(__VA_ARGS__, RREP4, RREP3, RREP2, RREP1)(__VA_ARGS__) #define foa(a,v) (auto& a : (v)) #define uniq(a) sort(all(a));a.erase(unique(all(a)),end(a)) #define len(n) (long long)(n).size() #define pb push_back using ll = long long; using ld = long double; using ull = unsigned long long; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vs = vector<string>; using vvs = vector<vs>; using vvvs = vector<vvs>; using vld = vector<ld>; using vvld = vector<vld>; using vvvld = vector<vvld>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using pll = pair<ll,ll>; using vpll = vector<pll>; template<class... T> constexpr auto min(T... a){ return min(initializer_list<common_type_t<T...>>{a...}); } template<class... T> void input(T&... a){ (cin >> ... >> a); } ll POW(ll a,ll b){ ll ans = 1; while (b){ if (b & 1){ ans *= a; } a *= a; b /= 2; } return ans; } ll MODPOW(ll a,ll b,ll c){ ll ans = 1; while (b){ if (b & 1){ ans *= a; ans %= c; } a *= a; a %= c; b /= 2; } return ans; } #define INT(...) int __VA_ARGS__; input(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; input(__VA_ARGS__) #define ULL(...) ull __VA_ARGS__; input(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; input(__VA_ARGS__) #define STR(...) string __VA_ARGS__; input(__VA_ARGS__) #define CHA(...) char __VA_ARGS__; input(__VA_ARGS__) #define VLL(name,length) vll name(length);rep(i,length){cin >> name[i];} #define VVLL(name,h,w) vvll name(h,vll(w));rep(i,h)rep(j,w){cin >> name[i][j];} #define VVVLL(name,a,b,c) vvvll name(a,vvll(b,vll(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];} #define VI(name,length) vi name(length);rep(i,length){cin >> name[i];} #define VVI(name,h,w) vvi name(h,vi(w));rep(i,h)rep(j,w){cin >> name[i][j];} #define VVVI(name,a,b,c) vvvi name(a,vvll(b,vi(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];} #define VLD(name,length) vld name(length);rep(i,length){cin >> name[i];} #define VVLD(name,h,w) vvld name(h,vld(w));rep(i,h)rep(j,w){cin >> name[i][j];} #define VVVLD(name,a,b,c) vvvld name(a,vvld(b,vld(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];} #define VC(name,length) vc name(length);rep(i,length){cin >> name[i];} #define VVC(name,h,w) vvc name(h,vc(w));rep(i,h)rep(j,w){cin >> name[i][j];} #define VVVC(name,a,b,c) vvvc name(a,vvc(b,vc(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];} #define VS(name,length) vs name(length);rep(i,length){cin >> name[i];} #define VVS(name,h,w) vvs name(h,vs(w));rep(i,h)rep(j,w){cin >> name[i][j];} #define VVVS(name,a,b,c) vvvs name(a,vvs(b,vs(c)));rep(i,a)rep(j,b)rep(k,c){cin >> name[i][j][k];} #define PLL(name) pll name;cin>>name.first>>name.second; #define VPLL(name,length) vpll name(length);rep(i,length){cin>>name[i].first>>name[i].second;} void print(){cout << "\n";} template<class T, class... Ts> void print(const T& a, const Ts&... b){cout << a;(cout << ... << (cout << ' ', b));cout << '\n';} void print(vll x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << " ";}else{cout << '\n';}}} void print(vvll x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << " ";}else{cout << '\n';}}} void print(vi x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << " ";}else{cout << '\n';}}} void print(vvi x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << " ";}else{cout << '\n';}}} void print(vvvi x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << " ";}else if(j!=len(x[i])-1){cout << " | ";}else{cout << '\n';}}} void print(vld x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << " ";}else{cout << '\n';}}} void print(vvld x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << " ";}else{cout << '\n';}}} void print(vvvld x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << " ";}else if(j!=len(x[i])-1){cout << " | ";}else{cout << '\n';}}} void print(vc x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << " ";}else{cout << '\n';}}} void print(vvc x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << " ";}else{cout << '\n';}}} void print(vvvc x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << " ";}else if(j!=len(x[i])-1){cout << " | ";}else{cout << '\n';}}} void print(vs x){rep(i,len(x)){cout << x[i];if(i!=len(x)-1){cout << " ";}else{cout << '\n';}}} void print(vvs x){rep(i,len(x))rep(j,len(x[i])){cout << x[i][j];if(j!=len(x[i])-1){cout << " ";}else{cout << '\n';}}} void print(vvvs x){rep(i,len(x))rep(j,len(x[i]))rep(k,len(x[i][j])){cout << x[i][j][k];if(k!=len(x[i][j])-1){cout << " ";}else if(j!=len(x[i])-1){cout << " | ";}else{cout << '\n';}}} void print(pll x){cout << x.first << x.second << '\n';} void print(vpll x){rep(i,len(x)){cout << x[i].first << x[i].second << '\n';}} #line 2 "misc/mo.hpp" struct Mo { int width; vector<int> left, right, order; Mo(int N, int Q) : order(Q) { width = max<int>(1, 1.0 * N / max<double>(1.0, sqrt(Q * 2.0 / 3.0))); iota(begin(order), end(order), 0); } void insert(int l, int r) { /* [l, r) */ left.emplace_back(l); right.emplace_back(r); } template <typename AL, typename AR, typename DL, typename DR, typename REM> void run(const AL &add_left, const AR &add_right, const DL &delete_left, const DR &delete_right, const REM &rem) { assert(left.size() == order.size()); sort(begin(order), end(order), [&](int a, int b) { int ablock = left[a] / width, bblock = left[b] / width; if (ablock != bblock) return ablock < bblock; if (ablock & 1) return right[a] < right[b]; return right[a] > right[b]; }); int nl = 0, nr = 0; for (auto idx : order) { while (nl > left[idx]) add_left(--nl); while (nr < right[idx]) add_right(nr++); while (nl < left[idx]) delete_left(nl++); while (nr > right[idx]) delete_right(--nr); rem(idx); } } }; /** * @brief Mo's algorithm * @docs docs/misc/mo.md */ // CUT begin // Count elements in $[A_\mathrm{begin}, ..., A_{\mathrm{end}-1}]$ which satisfy $A_i < \mathrm{query}$ // Complexity: $O(N \log N)$ for initialization, $O(\log^2 N)$ for each query // Verified: https://codeforces.com/contest/1288/submission/68865506 template <typename T> struct merge_sort_tree { int N; std::vector<std::vector<T>> x; merge_sort_tree() = default; merge_sort_tree(const std::vector<T> &vec) : N(vec.size()) { x.resize(N * 2); for (int i = 0; i < N; i++) x[N + i] = {vec[i]}; for (int i = N - 1; i; i--) { std::merge(x[i * 2].begin(), x[i * 2].end(), x[i * 2 + 1].begin(), x[i * 2 + 1].end(), std::back_inserter(x[i])); } } int cntLess(int l, int r, T query) const { l += N, r += N; int ret = 0; while (l < r) { if (l & 1) ret += std::lower_bound(x[l].begin(), x[l].end(), query) - x[l].begin(), l++; if (r & 1) r--, ret += std::lower_bound(x[r].begin(), x[r].end(), query) - x[r].begin(); l >>= 1, r >>= 1; } return ret; } int cntLesseq(int l, int r, T query) const { l += N, r += N; int ret = 0; while (l < r) { if (l & 1) ret += std::upper_bound(x[l].begin(), x[l].end(), query) - x[l].begin(), l++; if (r & 1) r--, ret += std::upper_bound(x[r].begin(), x[r].end(), query) - x[r].begin(); l >>= 1, r >>= 1; } return ret; } int cntMore(int begin, int end, T query) const { int tot = std::max(0, std::min(end, N) - std::max(begin, 0)); return tot - cntLesseq(begin, end, query); } int cntMoreeq(int begin, int end, T query) const { int tot = std::max(0, std::min(end, N) - std::max(begin, 0)); return tot - cntLess(begin, end, query); } template <class OStream> friend OStream &operator<<(OStream &os, const merge_sort_tree &clt) { os << '['; for (int i = 0; i < clt.N; i++) os << clt.x[clt.N + i][0] << ','; return os << ']'; } }; // N の約数をすべて求める関数 vector<long long> calc_divisors(long long N) { // 答えを表す集合 vector<long long> res; // 各整数 i が N の約数かどうかを調べる for (long long i = 1; i * i <= N; ++i) { // i が N の約数でない場合はスキップ if (N % i != 0) continue; // i は約数である res.push_back(i); // N ÷ i も約数である (重複に注意) if (N / i != i) res.push_back(N / i); } // 約数を小さい順に並び替えて出力 sort(res.begin(), res.end()); return res; } #line 2 "prime/fast-factorize.hpp" #include <cstdint> #include <numeric> #include <vector> using namespace std; #line 2 "internal/internal-math.hpp" #line 2 "internal/internal-type-traits.hpp" #include <type_traits> using namespace std; namespace internal { template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>, true_type, false_type>::type; template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type; template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template <typename T> \ constexpr bool x##_v = x<T>::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE #define ENABLE_HAS_TYPE(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<typename T::var>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; #define ENABLE_HAS_VAR(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; } // namespace internal #line 4 "internal/internal-math.hpp" namespace internal { #include <cassert> #include <utility> #line 10 "internal/internal-math.hpp" using namespace std; // a mod p template <typename T> T safe_mod(T a, T p) { a %= p; if constexpr (is_broadly_signed_v<T>) { if (a < 0) a += p; } return a; } // 返り値:pair(g, x) // s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g template <typename T> pair<T, T> inv_gcd(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); if (a == 0) return {p, 0}; T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } if (y < 0) y += p / b; return {b, y}; } // 返り値 : a^{-1} mod p // gcd(a, p) != 1 が必要 template <typename T> T inv(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } // T : 底の型 // U : T*T がオーバーフローしない かつ 指数の型 template <typename T, typename U> T modpow(T a, U n, T p) { a = safe_mod(a, p); T ret = 1 % p; while (n != 0) { if (n % 2 == 1) ret = U(ret) * a % p; a = U(a) * a % p; n /= 2; } return ret; } // 返り値 : pair(rem, mod) // 解なしのときは {0, 0} を返す template <typename T> pair<T, T> crt(const vector<T>& r, const vector<T>& m) { static_assert(is_broadly_signed_v<T>); assert(r.size() == m.size()); int n = int(r.size()); T r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); T r1 = safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) swap(r0, r1), swap(m0, m1); if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } auto [g, im] = inv_gcd(m0, m1); T u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; T x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } } // namespace internal #line 2 "misc/rng.hpp" #line 2 "internal/internal-seed.hpp" #include <chrono> using namespace std; namespace internal { unsigned long long non_deterministic_seed() { unsigned long long m = chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count(); m ^= 9845834732710364265uLL; m ^= m << 24, m ^= m >> 31, m ^= m << 35; return m; } unsigned long long deterministic_seed() { return 88172645463325252UL; } // 64 bit の seed 値を生成 (手元では seed 固定) // 連続で呼び出すと同じ値が何度も返ってくるので注意 // #define RANDOMIZED_SEED するとシードがランダムになる unsigned long long seed() { #if defined(NyaanLocal) && !defined(RANDOMIZED_SEED) return deterministic_seed(); #else return non_deterministic_seed(); #endif } } // namespace internal #line 4 "misc/rng.hpp" namespace my_rand { using i64 = long long; using u64 = unsigned long long; // [0, 2^64 - 1) u64 rng() { static u64 _x = internal::seed(); return _x ^= _x << 7, _x ^= _x >> 9; } // [l, r] i64 rng(i64 l, i64 r) { assert(l <= r); return l + rng() % u64(r - l + 1); } // [l, r) i64 randint(i64 l, i64 r) { assert(l < r); return l + rng() % u64(r - l); } // choose n numbers from [l, r) without overlapping vector<i64> randset(i64 l, i64 r, i64 n) { assert(l <= r && n <= r - l); unordered_set<i64> s; for (i64 i = n; i; --i) { i64 m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector<i64> ret; for (auto& x : s) ret.push_back(x); sort(begin(ret), end(ret)); return ret; } // [0.0, 1.0) double rnd() { return rng() * 5.42101086242752217004e-20; } // [l, r) double rnd(double l, double r) { assert(l < r); return l + rnd() * (r - l); } template <typename T> void randshf(vector<T>& v) { int n = v.size(); for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; #line 2 "modint/arbitrary-montgomery-modint.hpp" #include <iostream> using namespace std; template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void set_mod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt a; ArbitraryLazyMontgomeryModIntBase() : a(0) {} ArbitraryLazyMontgomeryModIntBase(const Long &b) : a(reduce(ULong(b % mod + mod) * n2)){}; static UInt reduce(const ULong &b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint &operator+=(const mint &b) { if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (Int(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(ULong(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } mint pow(ULong n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { Long t; is >> t; b = ArbitraryLazyMontgomeryModIntBase(t); return (is); } mint inverse() const { Int x = get(), y = get_mod(), u = 1, v = 0; while (y > 0) { Int t = x / y; swap(x -= t * y, y); swap(u -= t * v, v); } return mint{u}; } UInt get() const { UInt ret = reduce(a); return ret >= mod ? ret - mod : ret; } static UInt get_mod() { return mod; } }; // id に適当な乱数を割り当てて使う template <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>; template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; #line 2 "prime/miller-rabin.hpp" #line 4 "prime/miller-rabin.hpp" using namespace std; #line 8 "prime/miller-rabin.hpp" namespace fast_factorize { template <typename T, typename U> bool miller_rabin(const T& n, vector<T> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; T d = n - 1; while (d % 2 == 0) d /= 2; U e = 1, rev = n - 1; for (T w : ws) { if (w % n == 0) continue; T t = d; U y = internal::modpow<T, U>(w, t, n); while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint> bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (mint::get_mod() != n) mint::set_mod(n); unsigned long long d = n - 1; while (~d & 1) d >>= 1; mint e = 1, rev = n - 1; for (unsigned long long w : ws) { if (w % n == 0) continue; unsigned long long t = d; mint y = mint(w).pow(t); while (t != n - 1 && y != e && y != rev) y *= y, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(unsigned long long n) { using mint32 = ArbitraryLazyMontgomeryModInt<96229631>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>; if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (n < (1uLL << 30)) { return miller_rabin<mint32>(n, {2, 7, 61}); } else if (n < (1uLL << 62)) { return miller_rabin<mint64>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } else { return miller_rabin_u64(n); } } } // namespace fast_factorize using fast_factorize::is_prime; /** * @brief Miller-Rabin primality test */ #line 12 "prime/fast-factorize.hpp" namespace fast_factorize { using u64 = uint64_t; template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) do g = gcd((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } using i64 = long long; vector<i64> inner_factorize(u64 n) { using mint32 = ArbitraryLazyMontgomeryModInt<452288976>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>; if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) { p = pollard_rho<mint32, uint32_t>(n); } else if (n <= (1LL << 62)) { p = pollard_rho<mint64, uint64_t>(n); } else { exit(1); } if (p == n) return {i64(p)}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<i64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } map<i64, i64> factor_count(u64 n) { map<i64, i64> mp; for (auto &x : factorize(n)) mp[x]++; return mp; } vector<i64> divisors(u64 n) { if (n == 0) return {}; vector<pair<i64, i64>> v; for (auto &p : factorize(n)) { if (v.empty() || v.back().first != p) { v.emplace_back(p, 1); } else { v.back().second++; } } vector<i64> ret; auto f = [&](auto rc, int i, i64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } rc(rc, i + 1, x); for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first); }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; /** * @brief 高速素因数分解(Miller Rabin/Pollard's Rho) * @docs docs/prime/fast-factorize.md */ int main(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); LL(q); ll m = 1000000+10; vll a(m,0); a[1] = 0; rep(i,2,m){ auto x = factorize(i); a[i] = i / x[0]; } merge_sort_tree<ll> st(a); rep(i,q){ LL(l,r); ll x = st.cntMoreeq(l,r+1,l); print(r-l+1-x); } }