結果
| 問題 |
No.3105 Parallel Connection and Spanning Trees
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-12 16:18:36 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 142 ms / 5,000 ms |
| コード長 | 14,258 bytes |
| コンパイル時間 | 4,914 ms |
| コンパイル使用メモリ | 268,152 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-04-12 16:18:44 |
| 合計ジャッジ時間 | 7,965 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 32 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9 + 7>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【グラフの入力】O(n + m)
/*
* (始点, 終点) の組からなる入力を受け取り,n 頂点 m 辺のグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* directed : 有向グラフか(省略すれば false)
* zero_indexed : 入力が 0-indexed か(省略すれば false)
*/
Graph read_Graph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bi
Graph g(n);
if (m == -1) m = n - 1;
rep(j, m) {
int a, b;
cin >> a >> b;
if (!zero_indexed) { --a; --b; }
g[a].push_back(b);
if (!directed && a != b) g[b].push_back(a);
}
return g;
}
//【頂点の縮約】O(n + m)
/*
* 有向グラフ g とその頂点の分割 p について,成分 p[i] を 1 つの頂点 i として縮約したグラフを返す.
* 自己ループや多重辺が生じた場合は除去され,結果は単純グラフとなる.
* not_simple = true とすると自己ループや多重辺の除去を行わない.
*/
Graph vertex_contraction(const Graph& g, const vvi& p, bool not_simple = false) {
// verify : https://atcoder.jp/contests/arc030/tasks/arc030_3
int n = sz(g), m = sz(p);
// id[v] : 頂点 v の属する成分
vi id(n);
rep(i, m) repe(v, p[i]) id[v] = i;
if (!not_simple) {
// 多重辺や自己ループを防ぐため一旦辺の集合を unordered_set でもつ.
vector<unordered_set<int>> gc_set(m);
rep(s, n) {
repe(t, g[s]) gc_set[id[s]].insert(id[t]);
gc_set[id[s]].erase(id[s]);
}
// 結果の構築
Graph gc(m);
rep(s, m) repe(t, gc_set[s]) gc[s].push_back(t);
return gc;
}
else {
Graph gc(m);
rep(s, n) repe(t, g[s]) gc[id[s]].push_back(id[t]);
return gc;
}
}
//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
* n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
* n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
* 二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
* 行列が空かを返す.
*
* A + B : O(n m)
* n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
* n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
* n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
* n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
* m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
* n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
int n, m; // 行列のサイズ(n 行 m 列)
vector<vector<T>> v; // 行列の成分
// n×m 零行列で初期化する.
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n 単位行列で初期化する.
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// 二次元配列 a[0..n)[0..m) の要素で初期化する.
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
// 代入
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
// アクセス
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {
// verify : https://judge.yosupo.jp/problem/matrix_product
// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
return v[i];
}
// 入力
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
// 行の追加
void push_back(const vector<T>& a) {
Assert(sz(a) == m);
v.push_back(a);
n++;
}
// 行の削除
void pop_back() {
Assert(n > 0);
v.pop_back();
n--;
}
// サイズ変更
void resize(int n_) {
v.resize(n_);
n = n_;
}
void resize(int n_, int m_) {
n = n_;
m = m_;
v.resize(n);
rep(i, n) v[i].resize(m);
}
// 空か
bool empty() const { return min(n, m) == 0; }
// 比較
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(n, b.m);
rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Matrix pow(ll d) const {
// verify : https://judge.yosupo.jp/problem/pow_of_matrix
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d >>= 1;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//【行列式】O(n^3)
/*
* n 次正方行列 mat の行列式を返す.
*/
template <class T>
T determinant(const Matrix<T>& mat) {
// verify : https://judge.yosupo.jp/problem/matrix_det
int n = mat.n; auto v = mat.v;
// 注目位置を (i, j)(i 行目かつ j 列目)とする.
int i = 0, j = 0;
// 行列式の値
T res(1);
while (i < n && j < n) {
// 同じ列の下方の行から非 0 成分を見つける.
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 見つからなかったら零列ベクトルを含むので行列式は 0 である.
if (i2 == n) return T(0);
// 見つかったら i 行目とその行を入れ替え,行列式の値は -1 倍しておく.
if (i2 != i) {
swap(v[i], v[i2]);
res *= T(-1);
}
// v[i][j] が 1 になるよう行全体を v[i][j] で割り,行列式の値は v[i][j] 倍しておく.
res *= v[i][j];
T vij_inv = T(1) / v[i][j];
repi(j2, j, n - 1) v[i][j2] *= vij_inv;
// v[i][j] より下方の行の成分が全て 0 になるよう i 行目を定数倍して減じる(行列式の値は変化しない)
repi(i2, i + 1, n - 1) {
T mul = v[i2][j];
repi(j2, j, n - 1) v[i2][j2] -= v[i][j2] * mul;
}
// 注目位置を右下に移す.
i++; j++;
}
return res;
}
//【全域木の数え上げ】O(n^3)
/*
* 無向グラフ g(自己ループ,多重辺可)の全域木の個数を返す.
*
* 利用:【行列】,【行列式】
*/
mint matrix_tree_theorem(const Graph& g) {
// 参考 : https://mizuwater0.hatenablog.com/entry/2018/11/25/233547
// verify : https://judge.yosupo.jp/problem/counting_spanning_tree_undirected
//【備考】
// K_n の全域木は n^(n-2) 通り(Cayley の定理)
int n = sz(g);
if (n <= 1) return 1;
// mat : g のラプラシアン行列から最終行と最終列を除いたもの
// mat[s][s] : 頂点 s の次数(自己ループは除く)
// mat[s][t] : -(頂点 s, t を結ぶ辺の数)
Matrix<mint> mat(n - 1, n - 1);
rep(s, n - 1) {
repe(t, g[s]) {
if (t == s) continue; // 自己ループは無視
if (t < n - 1) mat[s][t]--;
mat[s][s]++;
}
}
// ラプラシアン行列の任意の余因子が全域木の個数を与える.
return determinant(mat);
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int K;
cin >> K;
vm c1(K), c2(K);
rep(k, K) {
int n, m;
cin >> n >> m;
auto g = read_Graph(n, m);
c1[k] = matrix_tree_theorem(g);
vvi p;
p.push_back({ 0, 1 });
repi(i, 2, n - 1) p.push_back({ i });
auto g2 = vertex_contraction(g, p, 1);
c2[k] = matrix_tree_theorem(g2);
}
dump(c1); dump(c2);
vvm dp(K + 1, vm(2));
dp[0][0] = 1;
rep(k, K) {
dp[k + 1][0] += dp[k][0] * (c1[k] * 2 + c2[k]);
dp[k + 1][1] += dp[k][0] * c1[k];
dp[k + 1][1] += dp[k][1] * (c1[k] * 2 + c2[k]);
}
dump(dp);
EXIT(dp[K][1]);
}