結果
問題 | No.3101 Range Eratosthenes Query |
ユーザー |
|
提出日時 | 2025-04-12 17:06:57 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 168 ms / 3,000 ms |
コード長 | 14,269 bytes |
コンパイル時間 | 13,798 ms |
コンパイル使用メモリ | 395,488 KB |
実行使用メモリ | 57,476 KB |
最終ジャッジ日時 | 2025-04-12 17:08:00 |
合計ジャッジ時間 | 18,208 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 24 |
ソースコード
use eratosthenes_sieve::EratosthenesSieve; use fenwick_tree::FenwickTree; use proconio::input; fn main() { input! { q: usize, lr: [(usize, usize); q], } let max_r = lr.iter().map(|v| v.1).max().unwrap(); let sieve = EratosthenesSieve::new(max_r); let calc_second_largest_divisor = |n: usize| { if n == 1 { 0 } else { n / sieve.least_factor(n) } }; let mut borders = (1..=max_r) .map(|i| (i, calc_second_largest_divisor(i))) .collect::<Vec<_>>(); borders.sort_unstable_by_key(|v| v.1); let mut ft = FenwickTree::<usize>::new(max_r + 1); let mut ilr = lr .iter() .enumerate() .map(|(i, &(l, r))| (i, l, r)) .collect::<Vec<_>>(); ilr.sort_unstable_by_key(|v| v.1); let mut ans = vec![0_usize; q]; let mut progress = 0_usize; for &(qi, l, r) in &ilr { while progress < borders.len() && borders[progress].1 < l { ft.add(borders[progress].0, 1); progress += 1; } ans[qi] = ft.sum(l..=r); } println!( "{}", ans.iter() .map(|v| v.to_string()) .collect::<Vec<_>>() .join("\n") ); } pub mod eratosthenes_sieve { //! Implements the Sieve of Eratosthenes. //! //! Finds the smallest prime factor of each number placed on the sieve, //! so it can perform Prime Factorization as well as Primality Test. #[derive(Debug, Clone)] pub struct EratosthenesSieve { sieve: Vec<usize>, } impl EratosthenesSieve { /// Constructs a Sieve of Eratosthenes. /// /// # Arguments /// /// * `upper_limit` - The largest number placed on the sieve. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// ``` pub fn new(upper_limit: usize) -> Self { let mut sieve: Vec<usize> = (0..=upper_limit).collect(); for p in (2..).take_while(|&i| i * i <= upper_limit) { if sieve[p] != p { continue; } for i in ((p * p)..=upper_limit).step_by(p) { if sieve[i] == i { sieve[i] = p; } } } Self { sieve } } /// Returns the least prime factor of `n`. /// /// However, if `n` is `1`, then `1` is returned. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.get_least_prime_factor(1), 1); /// assert_eq!(sieve.get_least_prime_factor(2), 2); /// assert_eq!(sieve.get_least_prime_factor(6), 2); /// assert_eq!(sieve.get_least_prime_factor(11), 11); /// assert_eq!(sieve.get_least_prime_factor(27), 3); /// ``` pub fn least_factor(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); self.sieve[n] } /// Determines if `n` is prime. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert!(!sieve.is_prime(1)); /// assert!(sieve.is_prime(2)); /// assert!(!sieve.is_prime(6)); /// assert!(sieve.is_prime(11)); /// assert!(!sieve.is_prime(27)); /// ``` pub fn is_prime(&self, n: usize) -> bool { n >= 2 && self.sieve[n] == n } /// Performs prime factorization of `n`. /// /// The result of the prime factorization is returned as a /// list of prime factor and exponent pairs. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.prime_factorization(1), vec![]); /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]); /// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]); /// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]); /// ``` pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut factors: Vec<(usize, usize)> = vec![]; while n != 1 { let p = self.sieve[n]; if factors.is_empty() || factors.last().unwrap().0 != p { factors.push((p, 1)); } else { factors.last_mut().unwrap().1 += 1; } n /= p; } factors } /// Creates a list of positive divisors of `n`. /// /// The positive divisors are listed in ascending order. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.create_divisor_list(1), vec![1]); /// assert_eq!(sieve.create_divisor_list(12), vec![1, 2, 3, 4, 6, 12]); /// assert_eq!(sieve.create_divisor_list(19), vec![1, 19]); /// assert_eq!(sieve.create_divisor_list(27), vec![1, 3, 9, 27]); /// ``` pub fn create_divisor_list(&self, n: usize) -> Vec<usize> { assert_ne!(n, 0, "`n` must be at least 1."); let prime_factors = self.prime_factorization(n); let divisor_num: usize = prime_factors.iter().map(|&(_, exp)| exp + 1).product(); let mut divisors = vec![1]; divisors.reserve(divisor_num - 1); for (p, e) in prime_factors { let mut add_divisors = vec![]; add_divisors.reserve(divisors.len() * e); let mut mul = 1; for _ in 1..=e { mul *= p; for &d in divisors.iter() { add_divisors.push(d * mul); } } divisors.append(&mut add_divisors); } divisors.sort_unstable(); divisors } /// Calculates the number of positive divisors of `n`. /// /// # Examples /// /// ``` /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve; /// /// let sieve = EratosthenesSieve::new(27); /// assert_eq!(sieve.calc_divisor_num(1), 1); /// assert_eq!(sieve.calc_divisor_num(12), 6); /// assert_eq!(sieve.calc_divisor_num(19), 2); /// assert_eq!(sieve.calc_divisor_num(27), 4); /// ``` pub fn calc_divisor_num(&self, n: usize) -> usize { assert_ne!(n, 0, "`n` must be at least 1."); let mut n = n; let mut divisor_num = 1; let mut cur_p = None; let mut cur_exp = 0; while n != 1 { let p = self.sieve[n]; if Some(p) == cur_p { cur_exp += 1; } else { divisor_num *= cur_exp + 1; cur_p = Some(p); cur_exp = 1; } n /= p; } divisor_num *= cur_exp + 1; divisor_num } } } pub mod fenwick_tree { //! Processes the following query in `O(log(n))` time //! for a sequence of numbers with `n` elements: //! * Update one element //! * Calculate the sum of the elements of a range //! * Gets the elements of a number sequence. use std::ops::{AddAssign, RangeBounds, Sub, SubAssign}; /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]); /// assert_eq!(ft.sum(2..), 11); /// ``` #[derive(Debug, Clone)] pub struct FenwickTree<T>(Vec<T>); impl<T> From<Vec<T>> for FenwickTree<T> where T: Default + Clone + AddAssign<T>, { /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]); /// assert_eq!(ft.sum(2..6), 9); /// ``` fn from(t: Vec<T>) -> Self { let mut ft = FenwickTree::new(t.len()); for (i, x) in t.into_iter().enumerate() { ft.add(i, x); } ft } } impl<T> FenwickTree<T> { /// Constructs a `FenwickTree<T>` with `n` elements. /// /// Each element is initialized with `T::default()`. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let ft = FenwickTree::<i32>::new(5); /// assert_eq!(ft.sum(..), 0); /// ``` pub fn new(n: usize) -> Self where T: Default + Clone, { FenwickTree(vec![T::default(); n]) } /// Add `x` to the `p`-th element. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]); /// assert_eq!(ft.sum(2..6), 9); /// /// ft.add(3, 100); /// assert_eq!(ft.sum(2..6), 109); /// ``` pub fn add(&mut self, p: usize, x: T) where T: Clone + AddAssign<T>, { let FenwickTree(data) = self; let n = data.len(); assert!(p < n); let mut p = p + 1; while p <= n { data[p - 1] += x.clone(); p += p & p.overflowing_neg().0; } } /// Subtract `x` from the `p`-th element. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let mut ft = FenwickTree::<u32>::from(vec![3, 1, 4, 1, 5, 9, 2]); /// assert_eq!(ft.sum(2..6), 19); /// /// ft.sub(3, 1); /// assert_eq!(ft.sum(2..6), 18); /// ``` pub fn sub(&mut self, p: usize, x: T) where T: Clone + SubAssign<T>, { let FenwickTree(data) = self; let n = data.len(); assert!(p < n); let mut p = p + 1; while p <= n { data[p - 1] -= x.clone(); p += p & p.overflowing_neg().0; } } /// Sets `x` to the `p`-th element. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]); /// assert_eq!(ft.sum(2..6), 9); /// /// ft.set(3, 100); /// assert_eq!(ft.sum(2..6), 108); /// ``` pub fn set(&mut self, p: usize, x: T) where T: Default + Clone + AddAssign<T> + Sub<T, Output = T> + SubAssign<T>, { let FenwickTree(data) = self; let n = data.len(); assert!(p < n); self.sub(p, self.get(p)); self.add(p, x); } /// Compute the sum of the range [0, r). fn inner_sum(&self, r: usize) -> T where T: Default + Clone + AddAssign<T>, { let mut s = T::default(); let mut r = r; while r > 0 { s += self.0[r - 1].clone(); r -= r & r.wrapping_neg(); } s } /// Calculate the total of the range. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]); /// assert_eq!(ft.sum(..), 13); /// assert_eq!(ft.sum(2..), 11); /// assert_eq!(ft.sum(..6), 11); /// assert_eq!(ft.sum(2..6), 9); /// assert_eq!(ft.sum(6..2), 0); /// ``` pub fn sum<R>(&self, rng: R) -> T where T: Default + Clone + AddAssign<T> + Sub<T, Output = T>, R: RangeBounds<usize>, { let n = self.0.len(); let l = match rng.start_bound() { std::ops::Bound::Included(&start_bound) => start_bound, std::ops::Bound::Excluded(&start_bound) => start_bound + 1, std::ops::Bound::Unbounded => 0, }; let r = match rng.end_bound() { std::ops::Bound::Included(&end_bound) => end_bound + 1, std::ops::Bound::Excluded(&end_bound) => end_bound, std::ops::Bound::Unbounded => n, }; assert!(l <= n && r <= n); if l >= r { T::default() } else { self.inner_sum(r) - self.inner_sum(l) } } /// Returns the value of an element in a sequence of numbers. /// Calculate the total of the range. /// /// # Examples /// /// ``` /// use atcoder8_library::fenwick_tree::FenwickTree; /// /// let ft = FenwickTree::from(vec![3, -1, 4, -1, 5]); /// assert_eq!(ft.get(2), 4); /// ``` pub fn get(&self, p: usize) -> T where T: Default + Clone + AddAssign<T> + Sub<T, Output = T>, { assert!(p < self.0.len()); self.sum(p..=p) } } }