結果

問題 No.3101 Range Eratosthenes Query
ユーザー atcoder8
提出日時 2025-04-12 17:06:57
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 168 ms / 3,000 ms
コード長 14,269 bytes
コンパイル時間 13,798 ms
コンパイル使用メモリ 395,488 KB
実行使用メモリ 57,476 KB
最終ジャッジ日時 2025-04-12 17:08:00
合計ジャッジ時間 18,208 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #

use eratosthenes_sieve::EratosthenesSieve;
use fenwick_tree::FenwickTree;
use proconio::input;

fn main() {
    input! {
        q: usize,
        lr: [(usize, usize); q],
    }

    let max_r = lr.iter().map(|v| v.1).max().unwrap();

    let sieve = EratosthenesSieve::new(max_r);

    let calc_second_largest_divisor = |n: usize| {
        if n == 1 {
            0
        } else {
            n / sieve.least_factor(n)
        }
    };

    let mut borders = (1..=max_r)
        .map(|i| (i, calc_second_largest_divisor(i)))
        .collect::<Vec<_>>();
    borders.sort_unstable_by_key(|v| v.1);

    let mut ft = FenwickTree::<usize>::new(max_r + 1);

    let mut ilr = lr
        .iter()
        .enumerate()
        .map(|(i, &(l, r))| (i, l, r))
        .collect::<Vec<_>>();
    ilr.sort_unstable_by_key(|v| v.1);

    let mut ans = vec![0_usize; q];
    let mut progress = 0_usize;
    for &(qi, l, r) in &ilr {
        while progress < borders.len() && borders[progress].1 < l {
            ft.add(borders[progress].0, 1);
            progress += 1;
        }

        ans[qi] = ft.sum(l..=r);
    }

    println!(
        "{}",
        ans.iter()
            .map(|v| v.to_string())
            .collect::<Vec<_>>()
            .join("\n")
    );
}

pub mod eratosthenes_sieve {
    //! Implements the Sieve of Eratosthenes.
    //!
    //! Finds the smallest prime factor of each number placed on the sieve,
    //! so it can perform Prime Factorization as well as Primality Test.

    #[derive(Debug, Clone)]
    pub struct EratosthenesSieve {
        sieve: Vec<usize>,
    }

    impl EratosthenesSieve {
        /// Constructs a Sieve of Eratosthenes.
        ///
        /// # Arguments
        ///
        /// * `upper_limit` - The largest number placed on the sieve.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]);
        /// ```
        pub fn new(upper_limit: usize) -> Self {
            let mut sieve: Vec<usize> = (0..=upper_limit).collect();

            for p in (2..).take_while(|&i| i * i <= upper_limit) {
                if sieve[p] != p {
                    continue;
                }

                for i in ((p * p)..=upper_limit).step_by(p) {
                    if sieve[i] == i {
                        sieve[i] = p;
                    }
                }
            }

            Self { sieve }
        }

        /// Returns the least prime factor of `n`.
        ///
        /// However, if `n` is `1`, then `1` is returned.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert_eq!(sieve.get_least_prime_factor(1), 1);
        /// assert_eq!(sieve.get_least_prime_factor(2), 2);
        /// assert_eq!(sieve.get_least_prime_factor(6), 2);
        /// assert_eq!(sieve.get_least_prime_factor(11), 11);
        /// assert_eq!(sieve.get_least_prime_factor(27), 3);
        /// ```
        pub fn least_factor(&self, n: usize) -> usize {
            assert_ne!(n, 0, "`n` must be at least 1.");

            self.sieve[n]
        }

        /// Determines if `n` is prime.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert!(!sieve.is_prime(1));
        /// assert!(sieve.is_prime(2));
        /// assert!(!sieve.is_prime(6));
        /// assert!(sieve.is_prime(11));
        /// assert!(!sieve.is_prime(27));
        /// ```
        pub fn is_prime(&self, n: usize) -> bool {
            n >= 2 && self.sieve[n] == n
        }

        /// Performs prime factorization of `n`.
        ///
        /// The result of the prime factorization is returned as a
        /// list of prime factor and exponent pairs.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert_eq!(sieve.prime_factorization(1), vec![]);
        /// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]);
        /// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]);
        /// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]);
        /// ```
        pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> {
            assert_ne!(n, 0, "`n` must be at least 1.");

            let mut n = n;

            let mut factors: Vec<(usize, usize)> = vec![];

            while n != 1 {
                let p = self.sieve[n];

                if factors.is_empty() || factors.last().unwrap().0 != p {
                    factors.push((p, 1));
                } else {
                    factors.last_mut().unwrap().1 += 1;
                }

                n /= p;
            }

            factors
        }

        /// Creates a list of positive divisors of `n`.
        ///
        /// The positive divisors are listed in ascending order.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert_eq!(sieve.create_divisor_list(1), vec![1]);
        /// assert_eq!(sieve.create_divisor_list(12), vec![1, 2, 3, 4, 6, 12]);
        /// assert_eq!(sieve.create_divisor_list(19), vec![1, 19]);
        /// assert_eq!(sieve.create_divisor_list(27), vec![1, 3, 9, 27]);
        /// ```
        pub fn create_divisor_list(&self, n: usize) -> Vec<usize> {
            assert_ne!(n, 0, "`n` must be at least 1.");

            let prime_factors = self.prime_factorization(n);
            let divisor_num: usize = prime_factors.iter().map(|&(_, exp)| exp + 1).product();

            let mut divisors = vec![1];
            divisors.reserve(divisor_num - 1);

            for (p, e) in prime_factors {
                let mut add_divisors = vec![];
                add_divisors.reserve(divisors.len() * e);
                let mut mul = 1;

                for _ in 1..=e {
                    mul *= p;

                    for &d in divisors.iter() {
                        add_divisors.push(d * mul);
                    }
                }

                divisors.append(&mut add_divisors);
            }

            divisors.sort_unstable();

            divisors
        }

        /// Calculates the number of positive divisors of `n`.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
        ///
        /// let sieve = EratosthenesSieve::new(27);
        /// assert_eq!(sieve.calc_divisor_num(1), 1);
        /// assert_eq!(sieve.calc_divisor_num(12), 6);
        /// assert_eq!(sieve.calc_divisor_num(19), 2);
        /// assert_eq!(sieve.calc_divisor_num(27), 4);
        /// ```
        pub fn calc_divisor_num(&self, n: usize) -> usize {
            assert_ne!(n, 0, "`n` must be at least 1.");

            let mut n = n;

            let mut divisor_num = 1;
            let mut cur_p = None;
            let mut cur_exp = 0;

            while n != 1 {
                let p = self.sieve[n];

                if Some(p) == cur_p {
                    cur_exp += 1;
                } else {
                    divisor_num *= cur_exp + 1;

                    cur_p = Some(p);
                    cur_exp = 1;
                }

                n /= p;
            }

            divisor_num *= cur_exp + 1;

            divisor_num
        }
    }
}

pub mod fenwick_tree {
    //! Processes the following query in `O(log(n))` time
    //! for a sequence of numbers with `n` elements:
    //! * Update one element
    //! * Calculate the sum of the elements of a range
    //! * Gets the elements of a number sequence.

    use std::ops::{AddAssign, RangeBounds, Sub, SubAssign};

    /// # Examples
    ///
    /// ```
    /// use atcoder8_library::fenwick_tree::FenwickTree;
    ///
    /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
    /// assert_eq!(ft.sum(2..), 11);
    /// ```
    #[derive(Debug, Clone)]
    pub struct FenwickTree<T>(Vec<T>);

    impl<T> From<Vec<T>> for FenwickTree<T>
    where
        T: Default + Clone + AddAssign<T>,
    {
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
        /// assert_eq!(ft.sum(2..6), 9);
        /// ```
        fn from(t: Vec<T>) -> Self {
            let mut ft = FenwickTree::new(t.len());
            for (i, x) in t.into_iter().enumerate() {
                ft.add(i, x);
            }

            ft
        }
    }

    impl<T> FenwickTree<T> {
        /// Constructs a `FenwickTree<T>` with `n` elements.
        ///
        /// Each element is initialized with `T::default()`.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let ft = FenwickTree::<i32>::new(5);
        /// assert_eq!(ft.sum(..), 0);
        /// ```
        pub fn new(n: usize) -> Self
        where
            T: Default + Clone,
        {
            FenwickTree(vec![T::default(); n])
        }

        /// Add `x` to the `p`-th element.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
        /// assert_eq!(ft.sum(2..6), 9);
        ///
        /// ft.add(3, 100);
        /// assert_eq!(ft.sum(2..6), 109);
        /// ```
        pub fn add(&mut self, p: usize, x: T)
        where
            T: Clone + AddAssign<T>,
        {
            let FenwickTree(data) = self;
            let n = data.len();

            assert!(p < n);

            let mut p = p + 1;
            while p <= n {
                data[p - 1] += x.clone();
                p += p & p.overflowing_neg().0;
            }
        }

        /// Subtract `x` from the `p`-th element.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let mut ft = FenwickTree::<u32>::from(vec![3, 1, 4, 1, 5, 9, 2]);
        /// assert_eq!(ft.sum(2..6), 19);
        ///
        /// ft.sub(3, 1);
        /// assert_eq!(ft.sum(2..6), 18);
        /// ```
        pub fn sub(&mut self, p: usize, x: T)
        where
            T: Clone + SubAssign<T>,
        {
            let FenwickTree(data) = self;
            let n = data.len();

            assert!(p < n);

            let mut p = p + 1;
            while p <= n {
                data[p - 1] -= x.clone();
                p += p & p.overflowing_neg().0;
            }
        }

        /// Sets `x` to the `p`-th element.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let mut ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
        /// assert_eq!(ft.sum(2..6), 9);
        ///
        /// ft.set(3, 100);
        /// assert_eq!(ft.sum(2..6), 108);
        /// ```
        pub fn set(&mut self, p: usize, x: T)
        where
            T: Default + Clone + AddAssign<T> + Sub<T, Output = T> + SubAssign<T>,
        {
            let FenwickTree(data) = self;
            let n = data.len();

            assert!(p < n);

            self.sub(p, self.get(p));
            self.add(p, x);
        }

        /// Compute the sum of the range [0, r).
        fn inner_sum(&self, r: usize) -> T
        where
            T: Default + Clone + AddAssign<T>,
        {
            let mut s = T::default();
            let mut r = r;
            while r > 0 {
                s += self.0[r - 1].clone();
                r -= r & r.wrapping_neg();
            }

            s
        }

        /// Calculate the total of the range.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let ft = FenwickTree::from(vec![3, -1, 4, 1, -5, 9, 2]);
        /// assert_eq!(ft.sum(..), 13);
        /// assert_eq!(ft.sum(2..), 11);
        /// assert_eq!(ft.sum(..6), 11);
        /// assert_eq!(ft.sum(2..6), 9);
        /// assert_eq!(ft.sum(6..2), 0);
        /// ```
        pub fn sum<R>(&self, rng: R) -> T
        where
            T: Default + Clone + AddAssign<T> + Sub<T, Output = T>,
            R: RangeBounds<usize>,
        {
            let n = self.0.len();

            let l = match rng.start_bound() {
                std::ops::Bound::Included(&start_bound) => start_bound,
                std::ops::Bound::Excluded(&start_bound) => start_bound + 1,
                std::ops::Bound::Unbounded => 0,
            };

            let r = match rng.end_bound() {
                std::ops::Bound::Included(&end_bound) => end_bound + 1,
                std::ops::Bound::Excluded(&end_bound) => end_bound,
                std::ops::Bound::Unbounded => n,
            };

            assert!(l <= n && r <= n);

            if l >= r {
                T::default()
            } else {
                self.inner_sum(r) - self.inner_sum(l)
            }
        }

        /// Returns the value of an element in a sequence of numbers.
        /// Calculate the total of the range.
        ///
        /// # Examples
        ///
        /// ```
        /// use atcoder8_library::fenwick_tree::FenwickTree;
        ///
        /// let ft = FenwickTree::from(vec![3, -1, 4, -1, 5]);
        /// assert_eq!(ft.get(2), 4);
        /// ```
        pub fn get(&self, p: usize) -> T
        where
            T: Default + Clone + AddAssign<T> + Sub<T, Output = T>,
        {
            assert!(p < self.0.len());

            self.sum(p..=p)
        }
    }
}
0