結果
| 問題 |
No.3101 Range Eratosthenes Query
|
| コンテスト | |
| ユーザー |
zawakasu
|
| 提出日時 | 2025-04-12 18:52:32 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 322 ms / 3,000 ms |
| コード長 | 6,916 bytes |
| コンパイル時間 | 1,436 ms |
| コンパイル使用メモリ | 125,680 KB |
| 実行使用メモリ | 74,484 KB |
| 最終ジャッジ日時 | 2025-04-12 18:52:44 |
| 合計ジャッジ時間 | 9,106 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 24 |
ソースコード
#include <iostream>
#include <iomanip>
#include <cassert>
#include <vector>
#include <algorithm>
#include <utility>
#include <numeric>
// #include "Src/Utility/BinarySearch.hpp"
// #include "Src/Sequence/CompressedSequence.hpp"
// #include "Src/Sequence/RunLengthEncoding.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#include <concepts>
namespace zawa {
namespace Concept {
template <class T>
concept Monoid = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace
} // namespace zawa
namespace zawa {
namespace Concept {
template <class T>
concept Inversible = requires {
typename T::Element;
{ T::inverse(std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
template <class T>
concept Group = Monoid<T> and Inversible<T>;
} // namespace Concept
} // namespace zawa
#include <ostream>
#include <functional>
#include <type_traits>
namespace zawa {
template <Concept::Group Group>
class FenwickTree {
private:
using Value = typename Group::Element;
usize n_;
u32 bitWidth_;
std::vector<Value> a_, dat_;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const Value& v) {
assert(0 <= i and i < static_cast<i32>(n_));
for ( i++ ; i < static_cast<i32>(dat_.size()) ; i += lsb(i)) {
dat_[i] = Group::operation(dat_[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
Value product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(n_));
Value res{ Group::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = Group::operation(res, dat_[i]);
}
return res;
}
public:
FenwickTree() : n_{}, bitWidth_{}, a_{}, dat_{} {}
FenwickTree(usize n) : n_{ n }, bitWidth_{ std::__lg(static_cast<u32>(n)) + 1 }, a_(n), dat_(n + 1, Group::identity()) {
dat_.shrink_to_fit();
}
FenwickTree(const std::vector<Value>& a) : n_{ a.size() }, bitWidth_{ std::__lg(static_cast<u32>(a.size())) + 1 }, a_(a), dat_(a.size() + 1, Group::identity()) {
dat_.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(n_) ; i++) {
addDat(i, a[i]);
}
}
// return a[i]
const Value& get(usize i) const noexcept {
assert(i < n_);
return a_[i];
}
// return a[i]
const Value& operator[](usize i) const noexcept {
assert(i < n_);
return a_[i];
}
usize size() const noexcept {
return n_;
}
// a[i] <- a[i] + v
void operation(usize i, const Value& v) {
assert(i < n_);
addDat(i, v);
a_[i] = Group::operation(a_[i], v);
}
// a[i] <- v
void set(usize i, const Value& v) {
assert(i < n_);
addDat(i, Group::operation(Group::inverse(a_[i]), v));
a_[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
Value prefixProduct(usize r) const {
assert(r <= n_);
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
Value product(usize l, usize r) const {
assert(l <= r and r <= n_);
return Group::operation(Group::inverse(product(l)), product(r));
}
template <class Function>
u32 maxRight(usize l, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(Value)>>, "maxRight's argument f must be function bool(T)");
assert(l < n_);
Value sum{ Group::inverse(product(l)) };
u32 r{};
for (u32 bit{ bitWidth_ } ; bit ; ) {
bit--;
u32 nxt{ r | (1u << bit) };
if (nxt < dat_.size() and f(Group::operation(sum, dat_[nxt]))) {
sum = Group::operation(sum, dat_[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
u32 minLeft(usize r, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(Value)>>, "minLeft's argument f must be function bool(T)");
assert(r <= n_);
Value sum{ product(r) };
u32 l{};
for (u32 bit{ bitWidth_ } ; bit ; ) {
bit--;
u32 nxt{ l | (1u << bit) };
if (nxt <= r and not f(Group::operation(Group::inverse(dat_[nxt]), sum))) {
sum = Group::operation(Group::inverse(dat_[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (u32 i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
};
} // namespace zawa
using namespace zawa;
// #include "atcoder/modint"
// using mint = atcoder::modint998244353;
int Q, L[200020], R[200020], lpf[1000010];
std::vector<int> x[1000010], ord[1000010];
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
{ // https://zawa-tin.github.io/cp-documentation/Src/Number/LinearSieve.hpp
std::vector<int> p;
for (int i = 2 ; i <= 1000000 ; i++) {
if (!lpf[i]) {
lpf[i] = i;
p.push_back(i);
}
for (int v : p) {
if ((long long)v * i > 1000000) break;
lpf[v * i] = v;
}
}
}
x[0].push_back(1);
for (int i = 2 ; i <= 1000000 ; i++) {
assert(i % lpf[i] == 0);
x[i / lpf[i]].push_back(i);
}
std::cin >> Q;
for (int i = 0 ; i < Q ; i++) {
std::cin >> L[i] >> R[i];
ord[L[i]].push_back(i);
}
FenwickTree<AdditiveGroup<int>> fen(1000001);
std::vector<int> ans(Q);
for (int i = 1 ; i <= 1000000 ; i++) {
for (int idx : x[i - 1]) fen.operation(idx, 1);
for (int idx : ord[i]) ans[idx] = fen.product(L[idx], R[idx] + 1);
}
for (int a : ans) std::cout << a << '\n';
}
zawakasu