結果
問題 |
No.177 制作進行の宮森あおいです!
|
ユーザー |
|
提出日時 | 2025-04-14 21:43:06 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,072 bytes |
コンパイル時間 | 3,525 ms |
コンパイル使用メモリ | 305,248 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-04-14 21:43:12 |
合計ジャッジ時間 | 4,569 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 10 WA * 3 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i=0; i<n; i++) #define debug 0 #define YES cout << "Yes" << endl; #define NO cout << "No" << endl; using ll = long long; using ld = long double; const int mod = 998244353; const int MOD = 1000000007; const double pi = atan2(0, -1); const int inf = 1 << 31 - 1; const ll INF = 1LL << 63 - 1; #include <time.h> #include <chrono> //vectorの中身を空白区切りで出力 template<typename T> void printv(vector<T> v) { for (int i = 0; i < v.size(); i++) { cout << v[i]; if (i < v.size() - 1) { cout << " "; } } cout << endl; } //vectorの中身を改行区切りで出力 template<typename T> void print1(vector<T> v) { for (auto x : v) { cout << x << endl; } } //二次元配列を出力 template<typename T> void printvv(vector<vector<T>> vv) { for (vector<T> v : vv) { printv(v); } } //vectorを降順にソート template<typename T> void rsort(vector<T>& v) { sort(v.begin(), v.end()); reverse(v.begin(), v.end()); } //昇順priority_queueを召喚 template<typename T> struct rpriority_queue { priority_queue<T, vector<T>, greater<T>> pq; void push(T x) { pq.push(x); } void pop() { pq.pop(); } T top() { return pq.top(); } size_t size() { return pq.size(); } bool empty() { return pq.empty(); } }; //mod mod下で逆元を算出する //高速a^n計算(mod ver.) ll power(ll a, ll n) { if (n == 0) { return 1; } else if (n % 2 == 0) { ll x = power(a, n / 2); x *= x; x %= mod; return x; } else { ll x = power(a, n - 1); x *= a; x %= mod; return x; } } //フェルマーの小定理を利用 ll modinv(ll p) { return power(p, mod - 2) % mod; } //Mexを求める struct Mex { map<int, int> mp; set<int> s; Mex(int Max) { for (int i = 0; i <= Max; i++) { s.insert(i); } } int _mex = 0; void Input(int x) { mp[x]++; s.erase(x); if (_mex == x) { _mex = *begin(s); } } void Remove(int x) { if (mp[x] == 0) { cout << "Mex ERROR!: NO VALUE WILL BE REMOVED" << endl; } mp[x]--; if (mp[x] == 0) { s.insert(x); if (*begin(s) == x) { _mex = x; } } } int mex() { return _mex; } }; //条件分岐でYes/Noを出力するタイプのやつ void YN(bool true_or_false) { cout << (true_or_false ? "Yes" : "No") << endl; } //最大公約数(ユークリッドの互除法) ll gcd(ll a, ll b) { if (b > a) { swap(a, b); } while (a % b != 0) { ll t = a; a = b; b = t % b; } return b; } //最小公倍数(gcdを定義しておく) ll lcm(ll a, ll b) { ll g = gcd(a, b); ll x = (a / g) * b; return x; } struct UnionFind { vector<int> par; UnionFind(int N) { rep(i, N) { par.push_back(i); } } int root(int x) { if (par[x] == x) { return x; } else { return par[x] = root(par[x]); } } bool isSame(int x, int y) { return root(x) == root(y); } void Union(int x, int y) { if (!isSame(x, y)) { int rx = root(x), ry = root(y); if (rx > ry) { par[rx] = ry; } else { par[ry] = rx; } } } }; //最大流問題を解く構造体(Ford-Fulkerson法.O(FE)) struct maxflow { struct Edge { int to, rev; ll capacity, init_capacity; Edge(int _to, int _rev, ll _capacity) :to(_to), rev(_rev), capacity(_capacity), init_capacity(_capacity) {}; }; vector<vector<Edge>> Graph; maxflow(int MAX_V) { Graph.assign(MAX_V, {}); } void input(int from, int to, ll capacity) { int e_id = Graph[from].size(); int r_id = Graph[to].size(); Graph[from].push_back(Edge(to, r_id, capacity)); Graph[to].push_back(Edge(from, e_id, 0)); } Edge& rev_Edge(Edge& edge) { return Graph[edge.to][edge.rev]; } vector<bool> visited; ll dfs(int now, int g, ll flow) { visited[now] = true; if (now == g) { return flow; } else { for (Edge& edge : Graph[now]) { if (!visited[edge.to] && edge.capacity > 0) { ll f = dfs(edge.to, g, min(flow, edge.capacity)); if (f == 0) { continue; } edge.capacity -= f; rev_Edge(edge).capacity += f; return f; } } return 0; } } void flowing(int s, int g, ll init_flow = INF) { bool cont = true; while (cont) { visited.assign(Graph.size(), false); ll flow = dfs(s, g, init_flow); init_flow -= flow; if (flow == 0) { cont = false; } } } ll get_maxflow(int g) { ll flow = 0; for (Edge& edge : Graph[g]) { Edge& rev_edge = rev_Edge(edge); ll tmp_flow = rev_edge.init_capacity - rev_edge.capacity; if (tmp_flow > 0) { flow += tmp_flow; } } return flow; } vector<tuple<int, int, ll>> flowing_edges() { vector<tuple<int, int, ll>> vec; rep(from, Graph.size()) { for (Edge& edge : Graph[from]) { ll flow = edge.init_capacity - edge.capacity; if (flow > 0) { vec.push_back({ from,edge.to,flow }); } } } return vec; } }; //Dinic法でのmax-flow。最大マッチングなど辺のキャパシティが小さい場合には高速 struct Dinic { struct Edge { int to, rev; ll capacity, init_capacity; Edge(int _to, int _rev, ll _capacity) :to(_to), rev(_rev), capacity(_capacity),init_capacity(_capacity) {}; }; vector<vector<Edge>> Graph; Edge& rev_Edge(Edge& edge) { return Graph[edge.to][edge.rev]; } vector<int> level,itr; Dinic(int MAX_V) { Graph.assign(MAX_V, {}); } void input(int _from, int _to, ll _capacity) { int e_id = Graph[_from].size(), r_id = Graph[_to].size(); Graph[_from].push_back(Edge(_to, r_id, _capacity)); Graph[_to].push_back(Edge(_from, e_id, 0LL)); } void bfs(int s, int g) { level.assign(Graph.size(), -1); level[s] = 0; queue<int> q; q.push(s); while (!q.empty()) { int now = q.front(); q.pop(); if (now == g) { continue; } for (Edge &e : Graph[now]) { if (level[e.to] == -1 && e.capacity > 0) { level[e.to] = level[now] + 1; q.push(e.to); } } } } ll dfs(int now, int g, ll flow) { if (now == g) { return flow; } else if (level[now] >= level[g]) { return 0; //gよりも深い場所に行こうとしたら終わり。flow=0を返す } else { for (int &i = itr[now]; i < Graph[now].size(); i++) { Edge& edge = Graph[now][i]; if (level[edge.to] == level[now] + 1 && edge.capacity > 0) { ll f = dfs(edge.to, g, min(flow, edge.capacity)); if (f == 0) { continue; } edge.capacity -= f; rev_Edge(edge).capacity += f; return f; } } return 0; //行先が無い場合、ここまで処理が残りflow=0を返す } } void flowing(int s, int g, ll init_flow = INF) { bool cont1 = true; while (cont1) { bfs(s, g); if (level[g] == -1) { cont1 = false; } else { bool cont2 = true; while (cont2) { itr.assign(Graph.size(), 0); ll flow = dfs(s, g, init_flow); init_flow -= flow; if (flow == 0) { cont2 = false; } } } } } ll get_flow(int g) { ll flow = 0; for (Edge& edge : Graph[g]) { flow += max(0LL, rev_Edge(edge).init_capacity - rev_Edge(edge).capacity); } return flow; } vector<tuple<int, int, ll>> flowing_edges(){ vector<tuple<int,int,ll>> vec; for (int from = 0; from < Graph.size(); from++) { for (Edge& edge : Graph[from]) { if (edge.init_capacity - edge.capacity > 0) { vec.push_back({ from,edge.to,edge.init_capacity - edge.capacity }); } } } return vec; } }; int main() { ll W; int N; cin >> W >> N; vector<ll> genga(N); rep(i, N) { cin >> genga[i]; } int M; cin >> M; vector<ll> kantoku(M); rep(i, M) { cin >> kantoku[i]; } maxflow mf(N + M + 2); rep(i, N) { mf.input(N + M, i, 10005); } rep(i, M) { mf.input(N + i, N + M + 1, kantoku[i]); } rep(i, M) { int Q; cin >> Q; set<int> s; rep(j, Q) { int x; cin >> x; x--; s.insert(x); } rep(j, N) { if (!s.count(j)) { mf.input(j, N + i, genga[j]); } } } mf.flowing(N + M, N + M + 1); if (mf.get_maxflow(N+M+1) >= W) { cout << "SHIROBAKO" << endl; } else { cout << "BANSAKUTSUKITA" << endl; } }