結果
| 問題 |
No.177 制作進行の宮森あおいです!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-14 21:46:20 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 15 ms / 2,000 ms |
| コード長 | 8,070 bytes |
| コンパイル時間 | 3,475 ms |
| コンパイル使用メモリ | 306,048 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-04-14 21:46:24 |
| 合計ジャッジ時間 | 4,432 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i=0; i<n; i++)
#define debug 0
#define YES cout << "Yes" << endl;
#define NO cout << "No" << endl;
using ll = long long;
using ld = long double;
const int mod = 998244353;
const int MOD = 1000000007;
const double pi = atan2(0, -1);
const int inf = 1 << 31 - 1;
const ll INF = 1LL << 63 - 1;
#include <time.h>
#include <chrono>
//vectorの中身を空白区切りで出力
template<typename T>
void printv(vector<T> v) {
for (int i = 0; i < v.size(); i++) {
cout << v[i];
if (i < v.size() - 1) {
cout << " ";
}
}
cout << endl;
}
//vectorの中身を改行区切りで出力
template<typename T>
void print1(vector<T> v) {
for (auto x : v) {
cout << x << endl;
}
}
//二次元配列を出力
template<typename T>
void printvv(vector<vector<T>> vv) {
for (vector<T> v : vv) {
printv(v);
}
}
//vectorを降順にソート
template<typename T>
void rsort(vector<T>& v) {
sort(v.begin(), v.end());
reverse(v.begin(), v.end());
}
//昇順priority_queueを召喚
template<typename T>
struct rpriority_queue {
priority_queue<T, vector<T>, greater<T>> pq;
void push(T x) {
pq.push(x);
}
void pop() {
pq.pop();
}
T top() {
return pq.top();
}
size_t size() {
return pq.size();
}
bool empty() {
return pq.empty();
}
};
//mod mod下で逆元を算出する
//高速a^n計算(mod ver.)
ll power(ll a, ll n) {
if (n == 0) {
return 1;
}
else if (n % 2 == 0) {
ll x = power(a, n / 2);
x *= x;
x %= mod;
return x;
}
else {
ll x = power(a, n - 1);
x *= a;
x %= mod;
return x;
}
}
//フェルマーの小定理を利用
ll modinv(ll p) {
return power(p, mod - 2) % mod;
}
//Mexを求める
struct Mex {
map<int, int> mp;
set<int> s;
Mex(int Max) {
for (int i = 0; i <= Max; i++) {
s.insert(i);
}
}
int _mex = 0;
void Input(int x) {
mp[x]++;
s.erase(x);
if (_mex == x) {
_mex = *begin(s);
}
}
void Remove(int x) {
if (mp[x] == 0) {
cout << "Mex ERROR!: NO VALUE WILL BE REMOVED" << endl;
}
mp[x]--;
if (mp[x] == 0) {
s.insert(x);
if (*begin(s) == x) {
_mex = x;
}
}
}
int mex() {
return _mex;
}
};
//条件分岐でYes/Noを出力するタイプのやつ
void YN(bool true_or_false) {
cout << (true_or_false ? "Yes" : "No") << endl;
}
//最大公約数(ユークリッドの互除法)
ll gcd(ll a, ll b) {
if (b > a) {
swap(a, b);
}
while (a % b != 0) {
ll t = a;
a = b;
b = t % b;
}
return b;
}
//最小公倍数(gcdを定義しておく)
ll lcm(ll a, ll b) {
ll g = gcd(a, b);
ll x = (a / g) * b;
return x;
}
struct UnionFind {
vector<int> par;
UnionFind(int N) {
rep(i, N) {
par.push_back(i);
}
}
int root(int x) {
if (par[x] == x) {
return x;
}
else {
return par[x] = root(par[x]);
}
}
bool isSame(int x, int y) {
return root(x) == root(y);
}
void Union(int x, int y) {
if (!isSame(x, y)) {
int rx = root(x), ry = root(y);
if (rx > ry) {
par[rx] = ry;
}
else {
par[ry] = rx;
}
}
}
};
//最大流問題を解く構造体(Ford-Fulkerson法.O(FE))
struct maxflow {
struct Edge {
int to, rev;
ll capacity, init_capacity;
Edge(int _to, int _rev, ll _capacity) :to(_to), rev(_rev), capacity(_capacity), init_capacity(_capacity) {};
};
vector<vector<Edge>> Graph;
maxflow(int MAX_V) {
Graph.assign(MAX_V, {});
}
void input(int from, int to, ll capacity) {
int e_id = Graph[from].size();
int r_id = Graph[to].size();
Graph[from].push_back(Edge(to, r_id, capacity));
Graph[to].push_back(Edge(from, e_id, 0));
}
Edge& rev_Edge(Edge& edge) {
return Graph[edge.to][edge.rev];
}
vector<bool> visited;
ll dfs(int now, int g, ll flow) {
visited[now] = true;
if (now == g) {
return flow;
}
else {
for (Edge& edge : Graph[now]) {
if (!visited[edge.to] && edge.capacity > 0) {
ll f = dfs(edge.to, g, min(flow, edge.capacity));
if (f == 0) {
continue;
}
edge.capacity -= f;
rev_Edge(edge).capacity += f;
return f;
}
}
return 0;
}
}
void flowing(int s, int g, ll init_flow = INF) {
bool cont = true;
while (cont) {
visited.assign(Graph.size(), false);
ll flow = dfs(s, g, init_flow);
init_flow -= flow;
if (flow == 0) {
cont = false;
}
}
}
ll get_maxflow(int g) {
ll flow = 0;
for (Edge& edge : Graph[g]) {
Edge& rev_edge = rev_Edge(edge);
ll tmp_flow = rev_edge.init_capacity - rev_edge.capacity;
if (tmp_flow > 0) {
flow += tmp_flow;
}
}
return flow;
}
vector<tuple<int, int, ll>> flowing_edges() {
vector<tuple<int, int, ll>> vec;
rep(from, Graph.size()) {
for (Edge& edge : Graph[from]) {
ll flow = edge.init_capacity - edge.capacity;
if (flow > 0) {
vec.push_back({ from,edge.to,flow });
}
}
}
return vec;
}
};
//Dinic法でのmax-flow。最大マッチングなど辺のキャパシティが小さい場合には高速
struct Dinic {
struct Edge {
int to, rev;
ll capacity, init_capacity;
Edge(int _to, int _rev, ll _capacity) :to(_to), rev(_rev), capacity(_capacity),init_capacity(_capacity) {};
};
vector<vector<Edge>> Graph;
Edge& rev_Edge(Edge& edge) {
return Graph[edge.to][edge.rev];
}
vector<int> level,itr;
Dinic(int MAX_V) {
Graph.assign(MAX_V, {});
}
void input(int _from, int _to, ll _capacity) {
int e_id = Graph[_from].size(), r_id = Graph[_to].size();
Graph[_from].push_back(Edge(_to, r_id, _capacity));
Graph[_to].push_back(Edge(_from, e_id, 0LL));
}
void bfs(int s, int g) {
level.assign(Graph.size(), -1);
level[s] = 0;
queue<int> q;
q.push(s);
while (!q.empty()) {
int now = q.front();
q.pop();
if (now == g) {
continue;
}
for (Edge &e : Graph[now]) {
if (level[e.to] == -1 && e.capacity > 0) {
level[e.to] = level[now] + 1;
q.push(e.to);
}
}
}
}
ll dfs(int now, int g, ll flow) {
if (now == g) {
return flow;
}
else if (level[now] >= level[g]) {
return 0; //gよりも深い場所に行こうとしたら終わり。flow=0を返す
}
else {
for (int &i = itr[now]; i < Graph[now].size(); i++) {
Edge& edge = Graph[now][i];
if (level[edge.to] == level[now] + 1 && edge.capacity > 0) {
ll f = dfs(edge.to, g, min(flow, edge.capacity));
if (f == 0) {
continue;
}
edge.capacity -= f;
rev_Edge(edge).capacity += f;
return f;
}
}
return 0; //行先が無い場合、ここまで処理が残りflow=0を返す
}
}
void flowing(int s, int g, ll init_flow = INF) {
bool cont1 = true;
while (cont1) {
bfs(s, g);
if (level[g] == -1) {
cont1 = false;
}
else {
bool cont2 = true;
while (cont2) {
itr.assign(Graph.size(), 0);
ll flow = dfs(s, g, init_flow);
init_flow -= flow;
if (flow == 0) {
cont2 = false;
}
}
}
}
}
ll get_flow(int g) {
ll flow = 0;
for (Edge& edge : Graph[g]) {
flow += max(0LL, rev_Edge(edge).init_capacity - rev_Edge(edge).capacity);
}
return flow;
}
vector<tuple<int, int, ll>> flowing_edges(){
vector<tuple<int,int,ll>> vec;
for (int from = 0; from < Graph.size(); from++) {
for (Edge& edge : Graph[from]) {
if (edge.init_capacity - edge.capacity > 0) {
vec.push_back({ from,edge.to,edge.init_capacity - edge.capacity });
}
}
}
return vec;
}
};
int main() {
ll W;
int N;
cin >> W >> N;
vector<ll> genga(N);
rep(i, N) {
cin >> genga[i];
}
int M;
cin >> M;
vector<ll> kantoku(M);
rep(i, M) {
cin >> kantoku[i];
}
maxflow mf(N + M + 2);
rep(i, N) {
mf.input(N + M, i, genga[i]);
}
rep(i, M) {
mf.input(N + i, N + M + 1, kantoku[i]);
}
rep(i, M) {
int Q;
cin >> Q;
set<int> s;
rep(j, Q) {
int x;
cin >> x;
x--;
s.insert(x);
}
rep(j, N) {
if (!s.count(j)) {
mf.input(j, N + i, INF);
}
}
}
mf.flowing(N + M, N + M + 1);
if (mf.get_maxflow(N+M+1) >= W) {
cout << "SHIROBAKO" << endl;
}
else {
cout << "BANSAKUTSUKITA" << endl;
}
}