結果
| 問題 | No.3101 Range Eratosthenes Query |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-15 16:37:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 891 ms / 3,000 ms |
| コード長 | 3,272 bytes |
| コンパイル時間 | 571 ms |
| コンパイル使用メモリ | 82,916 KB |
| 実行使用メモリ | 189,784 KB |
| 最終ジャッジ日時 | 2025-04-15 16:37:45 |
| 合計ジャッジ時間 | 19,620 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 24 |
ソースコード
import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.set_int_max_str_digits(10 ** 6)
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
# 高速エラストテネス sieve[n]はnにおけるn未満の最大の約数
def make_prime_table(n):
sieve = [1] * (n + 1)
sieve[0] = 0
sieve[1] = 0
for i in range(4, n + 1, 2):
sieve[i] = 2
for i in range(3, n + 1):
for j in range(i*2, n + 1, i):
sieve[j] = i
return sieve
prime_table = make_prime_table(1000001)
# 素数列挙
primes = [p for i, p in enumerate(prime_table) if i == p]
# 素因数分解 上のprime_tableと組み合わせて使う
def prime_factorize(n):
result = []
while n != 1:
p = prime_table[n]
e = 0
while n % p == 0:
n //= p
e += 1
result.append((p, e))
return result
# Nの素因数分解を辞書で返す(単体)
def prime_fact(n):
root = int(n**0.5) + 1
prime_dict = {}
for i in range(2, root):
cnt = 0
while n % i == 0:
cnt += 1
n = n // i
if cnt:
prime_dict[i] = cnt
if n != 1:
prime_dict[n] = 1
return prime_dict
# 約数列挙(単体)
def divisors(x):
res = set()
for i in range(1, int(x**0.5) + 2):
if x % i == 0:
res.add(i)
res.add(x//i)
return res
class BIT():
"""
BIT 0-index ACL for python
add(p, x): p番目にxを加算
get(p): p番目を取得
sum0(r): [0:r)の和を取得
sum(l, r): [l:r)の和を取得
"""
def __init__(self, N):
self.n = N
self.data = [0 for i in range(N)]
def add(self, p, x):
assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
p += 1
while (p <= self.n):
self.data[p - 1] += x
p += p & -p
def get(self, p):
return self.sum(p, p + 1)
def sum(self, l, r):
assert (0 <= l and l <= r and r <= self.n), "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
return self.sum0(r) - self.sum0(l)
def sum0(self, r):
s = 0
while (r > 0):
s += self.data[r - 1]
r -= r & -r
return s
def debug(self):
res = [self.get(p) for p in range(self.n)]
return res
def main():
Q = NI()
LR = EI(Q)
R2LI = [[] for _ in range(10**6+1)]
for i, (l, r) in enumerate(LR):
R2LI[r].append([l, i])
ans = [0] * Q
bit = BIT(10**6+1)
for r in range(1, 10**6+1):
bit.add(prime_table[r], 1)
for l, i in R2LI[r]:
ans[i] = r-l+1 - bit.sum(l, 10**6+1)
# print(bit.debug()[:21])
# print(l, r, i, ans[i])
print(*ans, sep="\n")
if __name__ == "__main__":
main()