結果
問題 |
No.1346 Rectangle
|
ユーザー |
![]() |
提出日時 | 2025-04-15 21:06:33 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,903 bytes |
コンパイル時間 | 237 ms |
コンパイル使用メモリ | 82,032 KB |
実行使用メモリ | 76,840 KB |
最終ジャッジ日時 | 2025-04-15 21:12:41 |
合計ジャッジ時間 | 1,955 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 1 WA * 16 |
ソースコード
import math import random def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return sorted(factors) def is_prime_power(n): if n == 1: return False factors = factor(n) return len(set(factors)) == 1 def integer_kth_root(n, k): if n <= 0: return 0 if k == 1: return n low = 1 high = n while low <= high: mid = (low + high) // 2 try: powered = pow(mid, k) except OverflowError: powered = float('inf') if powered == n: return mid elif powered < n: low = mid + 1 else: high = mid - 1 return high def find_largest_prime_less_than(n): if n <= 2: return 0 candidate = n - 1 while candidate >= 2: if is_prime(candidate): return candidate candidate -= 1 return 0 def main(): N = int(input().strip()) if N == 2: print("INF") return m = N - 1 if is_prime_power(m): print(m) return max_pp = 0 max_k = int(math.log2(m)) + 1 if m > 1 else 1 for k in range(max_k, 1, -1): p = integer_kth_root(m, k) if p < 2: continue while True: powered = pow(p, k) if powered < m: break p -= 1 if p < 2: break if p < 2: continue if is_prime(p): candidate = pow(p, k) if candidate > max_pp: max_pp = candidate largest_prime = find_largest_prime_less_than(m) if largest_prime > max_pp: max_pp = largest_prime print(max_pp) if __name__ == "__main__": main()