結果
| 問題 |
No.1480 Many Complete Graphs
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 21:25:37 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,946 bytes |
| コンパイル時間 | 368 ms |
| コンパイル使用メモリ | 81,792 KB |
| 実行使用メモリ | 101,860 KB |
| 最終ジャッジ日時 | 2025-04-15 21:29:55 |
| 合計ジャッジ時間 | 8,061 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 WA * 22 |
ソースコード
import heapq
def main():
import sys
input = sys.stdin.read
data = input().split()
ptr = 0
N = int(data[ptr])
ptr += 1
M = int(data[ptr])
ptr += 1
ops = []
for _ in range(M):
k_i = int(data[ptr])
ptr += 1
c_i = int(data[ptr])
ptr += 1
s_i = list(map(int, data[ptr:ptr + k_i]))
ptr += k_i
ops.append((k_i, c_i, s_i))
INF = 1 << 60
distance = [INF] * (N + 1)
distance[1] = 0
heap = []
heapq.heappush(heap, (0, 1))
# Process each operation once
for op in ops:
k_i, c_i, s_i = op
min_val = INF
# Find the minimal 2*d + u + 1 among nodes in s_i that have been reached
for u in s_i:
if distance[u] < INF:
current_val = 2 * distance[u] + u + 1
if current_val < min_val:
min_val = current_val
if min_val == INF:
continue # No nodes in this operation are reachable yet
# Update distances for all nodes in s_i
for v in s_i:
new_dist = (min_val + v) // 2 + c_i
if new_dist < distance[v]:
# Only push to heap if this is a better distance
if distance[v] == INF:
distance[v] = new_dist
heapq.heappush(heap, (new_dist, v))
else:
if new_dist < distance[v]:
distance[v] = new_dist
heapq.heappush(heap, (new_dist, v))
# Continue with Dijkstra's algorithm to ensure all nodes are processed
while heap:
d, u = heapq.heappop(heap)
if u == N:
break
if d > distance[u]:
continue
# No explicit edges to process here; all edges are handled via the operations
print(distance[N] if distance[N] != INF else -1)
if __name__ == "__main__":
main()
lam6er