結果
| 問題 |
No.1931 Fraction 2
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 21:32:24 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,008 bytes |
| コンパイル時間 | 276 ms |
| コンパイル使用メモリ | 82,244 KB |
| 実行使用メモリ | 79,660 KB |
| 最終ジャッジ日時 | 2025-04-15 21:35:07 |
| 合計ジャッジ時間 | 6,455 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | WA * 10 TLE * 1 -- * 25 |
ソースコード
MOD = 998244353
def main():
import sys
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
A = []
B = []
from collections import defaultdict
max_prime = 2 * 10**5
spf = list(range(max_prime + 1))
for i in range(2, int(max_prime**0.5) + 1):
if spf[i] == i:
for j in range(i*i, max_prime + 1, i):
if spf[j] == j:
spf[j] = i
def factorize(x):
factors = defaultdict(int)
while x > 1:
p = spf[x]
while x % p == 0:
factors[p] += 1
x //= p
return factors
lcm_factors = defaultdict(int)
B_factors_list = []
for _ in range(N):
a = int(input[idx])
b = int(input[idx + 1])
A.append(a)
B.append(b)
idx += 2
factors = factorize(b)
B_factors_list.append(factors)
for p, cnt in factors.items():
if lcm_factors[p] < cnt:
lcm_factors[p] = cnt
primes = list(lcm_factors.keys())
sum_total = 0
LCM_mod = 1
for p in primes:
LCM_mod = LCM_mod * pow(p, lcm_factors[p], MOD) % MOD
g = 1
for p in primes:
e_L = lcm_factors[p]
e_S = 0
current_k = e_L
found = False
while current_k > 0:
sum_mod_pk = 0
for i in range(N):
a = A[i]
b_factors = B_factors_list[i]
if p in b_factors:
e_Bi = b_factors[p]
exponent_p_Mi = e_L - e_Bi
if exponent_p_Mi >= current_k:
term = 0
else:
pk = pow(p, current_k)
Mi_part = 1
for q in b_factors:
if q == p:
continue
Mi_part = Mi_part * pow(q, lcm_factors[q] - b_factors[q], pk) % pk
for q in primes:
if q == p or q in b_factors:
continue
Mi_part = Mi_part * pow(q, lcm_factors[q], pk) % pk
Mi_part = Mi_part * pow(p, exponent_p_Mi, pk) % pk
term = (a % pk) * Mi_part % pk
else:
exponent_p_Mi = e_L
if exponent_p_Mi >= current_k:
term = 0
else:
pk = pow(p, current_k)
Mi_part = 1
for q in b_factors_list[i]:
Mi_part = Mi_part * pow(q, lcm_factors[q] - b_factors_list[i][q], pk) % pk
for q in primes:
if q == p or q in b_factors_list[i]:
continue
Mi_part = Mi_part * pow(q, lcm_factors[q], pk) % pk
Mi_part = Mi_part * pow(p, exponent_p_Mi, pk) % pk
term = (a % pk) * Mi_part % pk
sum_mod_pk = (sum_mod_pk + term) % pk
if sum_mod_pk == 0:
e_S = current_k
found = True
break
current_k -= 1
if not found:
e_S = 0
g *= pow(p, min(e_L, e_S))
g_mod = g % MOD
if g_mod == 0:
c_mod = 0
d_mod = 0
else:
sum_mod = 0
LCM_mod = 1
for p in primes:
LCM_mod = LCM_mod * pow(p, lcm_factors[p], g * MOD) % (g * MOD)
for i in range(N):
a = A[i]
b = B[i]
Mi = (LCM_mod // b) % (g * MOD)
term = (a % (g * MOD)) * Mi % (g * MOD)
sum_mod = (sum_mod + term) % (g * MOD)
c = (sum_mod // g) % MOD
d = (LCM_mod // g) % MOD
c_mod = c
d_mod = d
print(c_mod, d_mod)
if __name__ == "__main__":
main()
lam6er