結果
| 問題 |
No.181 A↑↑N mod M
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 21:45:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,708 bytes |
| コンパイル時間 | 224 ms |
| コンパイル使用メモリ | 82,172 KB |
| 実行使用メモリ | 55,008 KB |
| 最終ジャッジ日時 | 2025-04-15 21:46:07 |
| 合計ジャッジ時間 | 2,649 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 36 WA * 1 |
ソースコード
import sys
from math import gcd
def extended_gcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = extended_gcd(b % a, a)
return (g, x - (b // a) * y, y)
def crt(residues):
x = 0
product = 1
for mod, rem in residues:
g, a, b = extended_gcd(product, mod)
if (rem - x) % g != 0:
return None
lcm = product // g * mod
tmp = ((rem - x) // g * a) % (mod // g)
x += tmp * product
product = lcm
x %= product
return x
def factor(m):
factors = {}
i = 2
while i * i <= m:
while m % i == 0:
factors[i] = factors.get(i, 0) + 1
m = m // i
i += 1
if m > 1:
factors[m] = 1
return factors
def euler_phi(n):
if n == 0:
return 0
result = n
i = 2
while i * i <= n:
if n % i == 0:
while n % i == 0:
n = n // i
result -= result // i
i += 1
if n > 1:
result -= result // n
return result
def mod_tet_coprime(a, n, m):
if m == 1:
return 0
if n == 0:
return 1 % m
if n == 1:
return a % m
phi = euler_phi(m)
e = mod_tet_coprime(a, n-1, phi)
if e == 0 and phi != 0:
e += phi
return pow(a, e, m)
def minimal_t(a, x):
if x == 0:
return 0
current = 1
t = 0
while True:
if current >= x:
return t
if t == 0:
current = 1
else:
if a == 1:
current = 1
else:
if current >= x:
return t
next_current = a ** current
if next_current >= x:
return t + 1
else:
current = next_current
t += 1
if a == 1:
return 0
def compute_tower(a, t):
if t == 0:
return 1
res = 1
for _ in range(t):
res = a ** res
return res
def mod_non_coprime(a, p, k, n):
s = 0
temp = a
while temp % p == 0:
s += 1
temp = temp // p
d = temp
if n == 0:
return 1 % (p**k)
if n == 1:
return a % (p**k)
if s == 0:
return mod_tet_coprime(a, n, p**k)
else:
if n == 2:
e = a
if s * e >= k:
return 0
else:
part1 = pow(p, s * e, p**k)
part2 = pow(d, e, p**(k - s * e))
return (part1 * part2) % (p**k)
else:
x = (k + s - 1) // s
if x == 0:
t_needed = 0
else:
t_needed = minimal_t(a, x)
if (n-1) >= t_needed:
return 0
else:
e = compute_tower(a, n-1)
if s * e >= k:
return 0
else:
part1 = pow(p, s * e, p**k)
part2 = pow(d, e, p**(k - s * e))
return (part1 * part2) % (p**k)
def main():
A, N, M = map(int, sys.stdin.readline().split())
if M == 0:
print(0)
return
if N == 0:
print(1 % M)
return
factors = factor(M)
residues = []
for p, exp in factors.items():
pk = p ** exp
a_mod_pk = A % pk
if a_mod_pk == 0:
res = mod_non_coprime(A, p, exp, N)
else:
if gcd(A, p) == 1:
res = mod_tet_coprime(A, N, pk)
else:
res = mod_non_coprime(A, p, exp, N)
residues.append( (pk, res) )
result = crt(residues)
print(result % M)
if __name__ == '__main__':
main()
lam6er